BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17679730)

  • 1. Topology of the yeast fatty acid transport protein Fat1p: mechanistic implications for functional domains on the cytosolic surface of the plasma membrane.
    Obermeyer T; Fraisl P; DiRusso CC; Black PN
    J Lipid Res; 2007 Nov; 48(11):2354-64. PubMed ID: 17679730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex.
    Zou Z; Tong F; Faergeman NJ; Børsting C; Black PN; DiRusso CC
    J Biol Chem; 2003 May; 278(18):16414-22. PubMed ID: 12601005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional domains of the fatty acid transport proteins: studies using protein chimeras.
    DiRusso CC; Darwis D; Obermeyer T; Black PN
    Biochim Biophys Acta; 2008 Mar; 1781(3):135-43. PubMed ID: 18258213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p.
    Zou Z; DiRusso CC; Ctrnacta V; Black PN
    J Biol Chem; 2002 Aug; 277(34):31062-71. PubMed ID: 12052836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains.
    Dirusso CC; Connell EJ; Faergeman NJ; Knudsen J; Hansen JK; Black PN
    Eur J Biochem; 2000 Jul; 267(14):4422-33. PubMed ID: 10880966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae.
    Li H; Melton EM; Quackenbush S; DiRusso CC; Black PN
    Biochim Biophys Acta; 2007 Sep; 1771(9):1246-53. PubMed ID: 17604220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae.
    Qiu F; Kang N; Tan J; Yan S; Lin L; Cai L; Goodman JM; Gao Q
    Microbiol Spectr; 2023 Feb; 11(1):e0462522. PubMed ID: 36598223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization.
    Faergeman NJ; Black PN; Zhao XD; Knudsen J; DiRusso CC
    J Biol Chem; 2001 Oct; 276(40):37051-9. PubMed ID: 11477098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast.
    DiRusso CC; Li H; Darwis D; Watkins PA; Berger J; Black PN
    J Biol Chem; 2005 Apr; 280(17):16829-37. PubMed ID: 15699031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.
    Black PN; DiRusso CC
    Microbiol Mol Biol Rev; 2003 Sep; 67(3):454-72, table of contents. PubMed ID: 12966144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation.
    Black PN; DiRusso CC
    Biochim Biophys Acta; 2007 Mar; 1771(3):286-98. PubMed ID: 16798075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Saccharomyces cerevisiae FAT1 gene encodes an acyl-CoA synthetase that is required for maintenance of very long chain fatty acid levels.
    Choi JY; Martin CE
    J Biol Chem; 1999 Feb; 274(8):4671-83. PubMed ID: 9988704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process.
    DiRusso CC; Black PN
    Mol Cell Biochem; 1999 Feb; 192(1-2):41-52. PubMed ID: 10331657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol.
    Melton EM; Cerny RL; Watkins PA; DiRusso CC; Black PN
    J Biol Chem; 2011 Sep; 286(35):30670-30679. PubMed ID: 21768100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking.
    Black PN; DiRusso CC
    Novartis Found Symp; 2007; 286():127-38; discussion 138-41, 162-3, 196-203. PubMed ID: 18269179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to monitor Fatty Acid transport proceeding through vectorial acylation.
    Arias-Barrau E; Dirusso CC; Black PN
    Methods Mol Biol; 2009; 580():233-49. PubMed ID: 19784603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids.
    Faergeman NJ; DiRusso CC; Elberger A; Knudsen J; Black PN
    J Biol Chem; 1997 Mar; 272(13):8531-8. PubMed ID: 9079682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct interaction of Saccharomyces cerevisiae Faa1p with the Omi/HtrA protease orthologue Ynm3p alters lipid homeostasis.
    Tong F; Black PN; Bivins L; Quackenbush S; Ctrnacta V; DiRusso CC
    Mol Genet Genomics; 2006 Apr; 275(4):330-43. PubMed ID: 16470384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the reactivity of tetradecenoic acids, a triacsin, and unsaturated oximes with four purified Saccharomyces cerevisiae fatty acid activation proteins.
    Knoll LJ; Schall OF; Suzuki I; Gokel GW; Gordon JI
    J Biol Chem; 1995 Aug; 270(34):20090-7. PubMed ID: 7650027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.
    Tong F; Black PN; Coleman RA; DiRusso CC
    Arch Biochem Biophys; 2006 Mar; 447(1):46-52. PubMed ID: 16466685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.