These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17680240)

  • 1. Translational motion perception and vestiboocular responses in the absence of non-inertial cues.
    Seidman SH
    Exp Brain Res; 2008 Jan; 184(1):13-29. PubMed ID: 17680240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation.
    Merfeld DM; Park S; Gianna-Poulin C; Black FO; Wood S
    J Neurophysiol; 2005 Jul; 94(1):199-205. PubMed ID: 15730979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sensory cues underlying the perception of translation and path.
    Au Yong N; Paige GD; Seidman SH
    J Neurophysiol; 2007 Feb; 97(2):1100-13. PubMed ID: 17122319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during Translation and Tilt.
    Merfeld DM; Park S; Gianna-Poulin C; Black FO; Wood S
    J Neurophysiol; 2005 Jul; 94(1):186-98. PubMed ID: 15728767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation.
    Merfeld DM; Zupan LH; Gifford CA
    J Neurophysiol; 2001 Apr; 85(4):1648-60. PubMed ID: 11287488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perception of translational motion: what is vestibular and what is not.
    Seidman SH; Au Yong N; Paige GD
    Ann N Y Acad Sci; 2009 May; 1164():222-8. PubMed ID: 19645903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular catch-up saccades augmenting the human transient heave linear vestibulo-ocular reflex.
    Tian JR; Crane BT; Demer JL
    Exp Brain Res; 2003 Aug; 151(4):435-45. PubMed ID: 12845509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearity of canal-otolith interaction during eccentric rotation in humans.
    Seidman SH; Paige GD; Tomlinson RD; Schmitt N
    Exp Brain Res; 2002 Nov; 147(1):29-37. PubMed ID: 12373366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perception of the dynamic visual vertical during sinusoidal linear motion.
    Pomante A; Selen LPJ; Medendorp WP
    J Neurophysiol; 2017 Oct; 118(4):2499-2506. PubMed ID: 28814635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course and magnitude of illusory translation perception during off-vertical axis rotation.
    Vingerhoets RA; Medendorp WP; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1571-87. PubMed ID: 16319215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli.
    Zupan LH; Merfeld DM
    J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.
    Carriot J; Brooks JX; Cullen KE
    J Neurosci; 2013 Dec; 33(50):19555-66. PubMed ID: 24336720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations.
    Soyka F; Bülthoff HH; Barnett-Cowan M
    PLoS One; 2015; 10(8):e0136925. PubMed ID: 26322782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments.
    Green AM; Angelaki DE
    Prog Brain Res; 2007; 165():155-80. PubMed ID: 17925245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical ocular responses to constant linear acceleration generated by fore-aft head translation in monkeys.
    Wada Y; Kodaka Y; Kawano K
    Neurosci Res; 2007 Feb; 57(2):240-7. PubMed ID: 17126437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibulo-ocular reflex and gravity in fish.
    Takabayashi A; Iwata K; Ohmura-Iwasaki T; Mori S
    Biol Sci Space; 2004 Nov; 18(3):132-3. PubMed ID: 15858356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the VOR in response to linear acceleration.
    Paige GD; Seidman SH
    Ann N Y Acad Sci; 1999 May; 871():123-35. PubMed ID: 10372066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.