These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 17680272)
1. Genomewide computational analysis of nitrate response elements in rice and Arabidopsis. Das SK; Pathak RR; Choudhury D; Raghuram N Mol Genet Genomics; 2007 Nov; 278(5):519-25. PubMed ID: 17680272 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. Gómez-Porras JL; Riaño-Pachón DM; Dreyer I; Mayer JE; Mueller-Roeber B BMC Genomics; 2007 Aug; 8():260. PubMed ID: 17672917 [TBL] [Abstract][Full Text] [Related]
3. Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Konishi M; Yanagisawa S Plant J; 2010 Jul; 63(2):269-282. PubMed ID: 20444232 [TBL] [Abstract][Full Text] [Related]
4. Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Konishi M; Yanagisawa S Biochem Biophys Res Commun; 2011 Aug; 411(4):708-13. PubMed ID: 21777567 [TBL] [Abstract][Full Text] [Related]
5. Genomewide bioinformatic analysis negates any specific role for Dof, GATA and Ag/cTCA motifs in nitrate responsive gene expression in Arabidopsis. Pathak RR; Das SK; Choudhury D; Raghuram N Physiol Mol Biol Plants; 2009 Apr; 15(2):145-50. PubMed ID: 23572923 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. Kumari S; Ware D PLoS One; 2013; 8(10):e79011. PubMed ID: 24205361 [TBL] [Abstract][Full Text] [Related]
7. Cloning and characterization of microRNAs from rice. Sunkar R; Girke T; Jain PK; Zhu JK Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478 [TBL] [Abstract][Full Text] [Related]
8. Patterns and evolution of ACGT repeat cis-element landscape across four plant genomes. Mehrotra R; Sethi S; Zutshi I; Bhalothia P; Mehrotra S BMC Genomics; 2013 Mar; 14():203. PubMed ID: 23530833 [TBL] [Abstract][Full Text] [Related]
9. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Yazaki J; Shimatani Z; Hashimoto A; Nagata Y; Fujii F; Kojima K; Suzuki K; Taya T; Tonouchi M; Nelson C; Nakagawa A; Otomo Y; Murakami K; Matsubara K; Kawai J; Carninci P; Hayashizaki Y; Kikuchi S Physiol Genomics; 2004 Apr; 17(2):87-100. PubMed ID: 14982972 [TBL] [Abstract][Full Text] [Related]
11. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. Narsai R; Castleden I; Whelan J BMC Plant Biol; 2010 Nov; 10():262. PubMed ID: 21106056 [TBL] [Abstract][Full Text] [Related]
12. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Ibraheem O; Botha CE; Bradley G Comput Biol Chem; 2010 Dec; 34(5-6):268-83. PubMed ID: 21036669 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of potential plant E2F target genes. Vandepoele K; Vlieghe K; Florquin K; Hennig L; Beemster GT; Gruissem W; Van de Peer Y; Inzé D; De Veylder L Plant Physiol; 2005 Sep; 139(1):316-28. PubMed ID: 16126853 [TBL] [Abstract][Full Text] [Related]
15. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Geisler M; Kleczkowski LA; Karpinski S Plant J; 2006 Feb; 45(3):384-98. PubMed ID: 16412085 [TBL] [Abstract][Full Text] [Related]
16. GC-compositional strand bias around transcription start sites in plants and fungi. Fujimori S; Washio T; Tomita M BMC Genomics; 2005 Feb; 6():26. PubMed ID: 15733327 [TBL] [Abstract][Full Text] [Related]
17. Identification of plant promoter constituents by analysis of local distribution of short sequences. Yamamoto YY; Ichida H; Matsui M; Obokata J; Sakurai T; Satou M; Seki M; Shinozaki K; Abe T BMC Genomics; 2007 Mar; 8():67. PubMed ID: 17346352 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Wang D; Pei K; Fu Y; Sun Z; Li S; Liu H; Tang K; Han B; Tao Y Gene; 2007 Jun; 394(1-2):13-24. PubMed ID: 17408882 [TBL] [Abstract][Full Text] [Related]
19. In silico analysis of promoter regions from cold-induced genes in rice (Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control. Lindlöf A; Bräutigam M; Chawade A; Olsson O; Olsson B Bioinformatics; 2009 Jun; 25(11):1345-8. PubMed ID: 19321735 [TBL] [Abstract][Full Text] [Related]
20. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. Bernard V; Brunaud V; Lecharny A BMC Genomics; 2010 Mar; 11():166. PubMed ID: 20222994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]