BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17680295)

  • 1. Ricinus communis contains an acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester.
    He X; Chen GQ; Kang ST; McKeon TA
    Lipids; 2007 Oct; 42(10):931-8. PubMed ID: 17680295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil.
    Burgal J; Shockey J; Lu C; Dyer J; Larson T; Graham I; Browse J
    Plant Biotechnol J; 2008 Oct; 6(8):819-31. PubMed ID: 18643899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean.
    He X; Turner C; Chen GQ; Lin JT; McKeon TA
    Lipids; 2004 Apr; 39(4):311-8. PubMed ID: 15357018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds.
    Arroyo-Caro JM; Chileh T; Kazachkov M; Zou J; Alonso DL; García-Maroto F
    Plant Sci; 2013 Feb; 199-200():29-40. PubMed ID: 23265316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.
    Tomosugi M; Ichihara K; Saito K
    Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism.
    Shockey JM; Fulda MS; Browse JA
    Plant Physiol; 2002 Aug; 129(4):1710-22. PubMed ID: 12177484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crucial enzymes in the hydroxylated triacylglycerol-ricinoleate biosynthesis pathway of castor bean.
    Chen Y; Liu L; Tian X; Di J; Su Y; Huang F; Chen Y
    Curr Protein Pept Sci; 2014; 15(6):572-82. PubMed ID: 25059327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant.
    Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E
    Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean.
    Broun P; Somerville C
    Plant Physiol; 1997 Mar; 113(3):933-42. PubMed ID: 9085577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L.
    Arroyo-Caro JM; Chileh T; Alonso DL; García-Maroto F
    Lipids; 2013 Jul; 48(7):663-74. PubMed ID: 23700249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase.
    Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA
    Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast.
    Pulsifer IP; Kluge S; Rowland O
    Plant Physiol Biochem; 2012 Feb; 51():31-9. PubMed ID: 22153237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids.
    Steinberg SJ; Morgenthaler J; Heinzer AK; Smith KD; Watkins PA
    J Biol Chem; 2000 Nov; 275(45):35162-9. PubMed ID: 10954726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.
    Kim HU; Lee KR; Go YS; Jung JH; Suh MC; Kim JB
    Plant Cell Physiol; 2011 Jun; 52(6):983-93. PubMed ID: 21659329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea.
    Billault I; Mantle PG; Robins RJ
    J Am Chem Soc; 2004 Mar; 126(10):3250-6. PubMed ID: 15012155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Saccharomyces cerevisiae FAT1 gene encodes an acyl-CoA synthetase that is required for maintenance of very long chain fatty acid levels.
    Choi JY; Martin CE
    J Biol Chem; 1999 Feb; 274(8):4671-83. PubMed ID: 9988704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical aspects of castor oil biosynthesis.
    McKeon TA; Chen GQ; Lin JT
    Biochem Soc Trans; 2000 Dec; 28(6):972-4. PubMed ID: 11171276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of an Arabidopsis acyl-coenzyme a synthetase localized on glyoxysomal membranes.
    Hayashi H; De Bellis L; Hayashi Y; Nito K; Kato A; Hayashi M; Hara-Nishimura I; Nishimura M
    Plant Physiol; 2002 Dec; 130(4):2019-26. PubMed ID: 12481085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of ricinoleate in castor oil.
    McKeon TA; Lin JT; Stafford AE
    Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.