BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17680661)

  • 1. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.
    Mavri-Damelin D; Damelin LH; Eaton S; Rees M; Selden C; Hodgson HJ
    Biotechnol Bioeng; 2008 Feb; 99(3):644-51. PubMed ID: 17680661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2.
    Mavri-Damelin D; Eaton S; Damelin LH; Rees M; Hodgson HJ; Selden C
    Int J Biochem Cell Biol; 2007; 39(3):555-64. PubMed ID: 17098461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonia metabolism capacity of HepG2 cells with high expression of human glutamine synthetase.
    Tang NH; Wang XQ; Li XJ; Chen YL
    Hepatobiliary Pancreat Dis Int; 2008 Dec; 7(6):621-7. PubMed ID: 19073408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginase release by primary hepatocytes and liver slices results in rapid conversion of arginine to urea in cell culture media.
    Peters SJ; Haagsman HP; van Norren K
    Toxicol In Vitro; 2008 Jun; 22(4):1094-8. PubMed ID: 18348903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic fates of ammonia-N in ruminal epithelial and duodenal mucosal cells isolated from growing sheep.
    Oba M; Baldwin RL; Owens SL; Bequette BJ
    J Dairy Sci; 2005 Nov; 88(11):3963-70. PubMed ID: 16230702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of glucose and insulin on HepG2-C3A cell metabolism.
    Iyer VV; Yang H; Ierapetritou MG; Roth CM
    Biotechnol Bioeng; 2010 Oct; 107(2):347-56. PubMed ID: 20506178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen excretion and expression of carbamoyl-phosphate synthetase III activity and mRNA in extrahepatic tissues of largemouth bass (Micropterus salmoides).
    Kong H; Edberg DD; Korte JJ; Salo WL; Wright PA; Anderson PM
    Arch Biochem Biophys; 1998 Feb; 350(2):157-68. PubMed ID: 9473289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding.
    Kajimura M; Walsh PJ; Mommsen TP; Wood CM
    Physiol Biochem Zool; 2006; 79(3):602-13. PubMed ID: 16691526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of crowding on ornithine-urea cycle enzyme mRNA expression and activity in gulf toadfish (Opsanus beta).
    Laberge T; Walsh PJ; McDonald MD
    J Exp Biol; 2009 Aug; 212(Pt 15):2394-402. PubMed ID: 19617432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic gene expression induced by polyurethane foam/spheroid culture of hepatoma cell line, Hep G2 as a promising cell source for bioartificial liver.
    Shimada M; Yamashita Y; Tanaka S; Shirabe K; Nakazawa K; Ijima H; Sakiyama R; Fukuda J; Funatsu K; Sugimachi K
    Hepatogastroenterology; 2007; 54(75):814-20. PubMed ID: 17591070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of urea cycle enzymes in transplantable hepatomas and in the livers of tumor-bearing rats and humans.
    Brebnor LD; Grimm J; Balinsky JB
    Cancer Res; 1981 Jul; 41(7):2692-9. PubMed ID: 6265064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable overexpression of arginase I and ornithine transcarbamylase in HepG2 cells improves its ammonia detoxification.
    Tang N; Wang Y; Wang X; Zhou L; Zhang F; Li X; Chen Y
    J Cell Biochem; 2012 Feb; 113(2):518-27. PubMed ID: 21938740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of activity and mRNA expression of urea cycle enzymes in the liver of developing Holstein calves.
    Takagi M; Yonezawa T; Haga S; Shingu H; Kobayashi Y; Takahashi T; Ohtani Y; Obara Y; Katoh K
    J Anim Sci; 2008 Jul; 86(7):1526-32. PubMed ID: 18344300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of glutamine and arginase in protection against ammonia-induced cell death in gastric epithelial cells.
    Nakamura E; Hagen SJ
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1264-75. PubMed ID: 12388179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.
    Kinasiewicz A; Gautier A; Lewinska D; Bukowski J; Legallais C; WeryƄski A
    Transplant Proc; 2007 Nov; 39(9):2911-3. PubMed ID: 18022014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver.
    Poyck PP; van Wijk AC; van der Hoeven TV; de Waart DR; Chamuleau RA; van Gulik TM; Oude Elferink RP; Hoekstra R
    J Hepatol; 2008 Feb; 48(2):266-75. PubMed ID: 18093687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loofa sponge as a scaffold for the culture of human hepatocyte cell line.
    Chen JP; Yu SC; Hsu BR; Fu SH; Liu HS
    Biotechnol Prog; 2003; 19(2):522-7. PubMed ID: 12675596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor.
    Nibourg GA; Hoekstra R; van der Hoeven TV; Ackermans MT; Hakvoort TB; van Gulik TM; Chamuleau RA
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1860-8. PubMed ID: 23770120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate-encapsulated human hepatoma C3A cells for use in a bioartificial liver device - the hybrid-MDS.
    Harm S; Stroble K; Hartmann J; Falkenhagen D
    Int J Artif Organs; 2009 Nov; 32(11):769-78. PubMed ID: 20020408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HepaRG cell line is suitable for bioartificial liver application.
    Hoekstra R; Nibourg GA; van der Hoeven TV; Ackermans MT; Hakvoort TB; van Gulik TM; Lamers WH; Elferink RP; Chamuleau RA
    Int J Biochem Cell Biol; 2011 Oct; 43(10):1483-9. PubMed ID: 21726661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.