BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17680689)

  • 1. RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of beta-propeller domains.
    Stevens TJ; Paoli M
    Proteins; 2008 Feb; 70(2):378-87. PubMed ID: 17680689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller.
    Renault L; Nassar N; Vetter I; Becker J; Klebe C; Roth M; Wittinghofer A
    Nature; 1998 Mar; 392(6671):97-101. PubMed ID: 9510255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of the ran-RCC1 interaction using biochemical and docking experiments.
    Azuma Y; Renault L; García-Ranea JA; Valencia A; Nishimoto T; Wittinghofer A
    J Mol Biol; 1999 Jun; 289(4):1119-30. PubMed ID: 10369786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit.
    Garcia-Higuera I; Fenoglio J; Li Y; Lewis C; Panchenko MP; Reiner O; Smith TF; Neer EJ
    Biochemistry; 1996 Nov; 35(44):13985-94. PubMed ID: 8909296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals.
    Prag S; Adams JC
    BMC Bioinformatics; 2003 Sep; 4():42. PubMed ID: 13678422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell surface proteins in archaeal and bacterial genomes comprising "LVIVD", "RIVW" and "LGxL" tandem sequence repeats are predicted to fold as beta-propeller.
    Adindla S; Inampudi KK; Guruprasad L
    Int J Biol Macromol; 2007 Oct; 41(4):454-68. PubMed ID: 17681373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components.
    Springer TA
    J Mol Biol; 1998 Nov; 283(4):837-62. PubMed ID: 9790844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RCC1 superfamily: from genes, to function, to disease.
    Hadjebi O; Casas-Terradellas E; Garcia-Gonzalo FR; Rosa JL
    Biochim Biophys Acta; 2008 Aug; 1783(8):1467-79. PubMed ID: 18442486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology-based method for identification of protein repeats using statistical significance estimates.
    Andrade MA; Ponting CP; Gibson TJ; Bork P
    J Mol Biol; 2000 May; 298(3):521-37. PubMed ID: 10772867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere.
    Comeau AM; Krisch HM
    Mol Biol Evol; 2008 Jul; 25(7):1321-32. PubMed ID: 18391067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solution structure of an N-terminally truncated version of the yeast CDC24p PB1 domain shows a different beta-sheet topology.
    Leitner D; Wahl M; Labudde D; Krause G; Diehl A; Schmieder P; Pires JR; Fossi M; Wiedemann U; Leidert M; Oschkinat H
    FEBS Lett; 2005 Jul; 579(17):3534-8. PubMed ID: 15961083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interrupted beta-propeller and protein disorder: structural bioinformatics insights into the N-terminus of alsin.
    Soares DC; Barlow PN; Porteous DJ; Devon RS
    J Mol Model; 2009 Feb; 15(2):113-22. PubMed ID: 19023603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and kinetic analysis of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase.
    Lim D; Park HU; De Castro L; Kang SG; Lee HS; Jensen S; Lee KJ; Strynadka NC
    Nat Struct Biol; 2001 Oct; 8(10):848-52. PubMed ID: 11573088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of genes and repeats in the Nimrod superfamily.
    Somogyi K; Sipos B; Pénzes Z; Kurucz E; Zsámboki J; Hultmark D; Andó I
    Mol Biol Evol; 2008 Nov; 25(11):2337-47. PubMed ID: 18703524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins.
    Hudson AM; Cooley L
    Subcell Biochem; 2008; 48():6-19. PubMed ID: 18925367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller.
    Good MC; Greenstein AE; Young TA; Ng HL; Alber T
    J Mol Biol; 2004 May; 339(2):459-69. PubMed ID: 15136047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of WD-repeat proteins.
    Smith TF
    Subcell Biochem; 2008; 48():20-30. PubMed ID: 18925368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat.
    Nikkhah M; Jawad-Alami Z; Demydchuk M; Ribbons D; Paoli M
    Biomol Eng; 2006 Sep; 23(4):185-94. PubMed ID: 16651025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.