BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17680702)

  • 21. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteases that can distinguish among different post-translational forms of tyrosine engineered using multicolor flow cytometry.
    Varadarajan N; Pogson M; Georgiou G; Iverson BL
    J Am Chem Soc; 2009 Dec; 131(50):18186-90. PubMed ID: 19924991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structural role of receptor tyrosine sulfation in chemokine recognition.
    Ludeman JP; Stone MJ
    Br J Pharmacol; 2014 Mar; 171(5):1167-79. PubMed ID: 24116930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pattern and temporal sequence of sulfation of CCR5 N-terminal peptides by tyrosylprotein sulfotransferase-2: an assessment of the effects of N-terminal residues.
    Jen CH; Moore KL; Leary JA
    Biochemistry; 2009 Jun; 48(23):5332-8. PubMed ID: 19402700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant expression of selectively sulfated proteins in Escherichia coli.
    Liu CC; Schultz PG
    Nat Biotechnol; 2006 Nov; 24(11):1436-40. PubMed ID: 17072302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland.
    Cabras T; Fanali C; Monteiro JA; Amado F; Inzitari R; Desiderio C; Scarano E; Giardina B; Castagnola M; Messana I
    J Proteome Res; 2007 Jul; 6(7):2472-80. PubMed ID: 17503797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins.
    Maxwell JWC; Payne RJ
    Curr Opin Chem Biol; 2020 Oct; 58():72-85. PubMed ID: 32777686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody.
    Hoffhines AJ; Damoc E; Bridges KG; Leary JA; Moore KL
    J Biol Chem; 2006 Dec; 281(49):37877-87. PubMed ID: 17046811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass spectrometric detection of tyrosine sulfation in human pancreatic trypsinogens, but not in tumor-associated trypsinogen.
    Itkonen O; Helin J; Saarinen J; Kalkkinen N; Ivanov KI; Stenman UH; Valmu L
    FEBS J; 2008 Jan; 275(2):289-301. PubMed ID: 18076654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of a sulfotyrosine-recognizing small protein scaffold for the study of protein tyrosine O-sulfation.
    Lawrie J; Niu W; Guo J
    Methods Enzymol; 2019; 622():67-89. PubMed ID: 31155066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for drug discovery by targeting sulfation pathways.
    Hemmerich S; Verdugo D; Rath VL
    Drug Discov Today; 2004 Nov; 9(22):967-75. PubMed ID: 15539140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinguishing Sulfotyrosine Containing Peptides from their Phosphotyrosine Counterparts Using Mass Spectrometry.
    Chen G; Zhang Y; Trinidad JC; Dann C
    J Am Soc Mass Spectrom; 2018 Mar; 29(3):455-462. PubMed ID: 29313205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfoproteomics Workflow with Precursor Ion Accurate Mass Shift Analysis Reveals Novel Tyrosine Sulfoproteins in the Golgi.
    Kweon HK; Kong AT; Hersberger KE; Huang S; Nesvizhskii AI; Wang Y; Hakansson K; Andrews PC
    J Proteome Res; 2024 Jan; 23(1):71-83. PubMed ID: 38112105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of tyrosine sulfate in acidic solutions.
    Balsved D; Bundgaard JR; Sen JW
    Anal Biochem; 2007 Apr; 363(1):70-6. PubMed ID: 17307131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.
    Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J
    FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-translational modifications of mitochondrial outer membrane proteins.
    Distler AM; Kerner J; Lee K; Hoppel CL
    Methods Enzymol; 2009; 457():97-115. PubMed ID: 19426864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease.
    Liu J; Louie S; Hsu W; Yu KM; Nicholas HB; Rosenquist GL
    Am J Respir Cell Mol Biol; 2008 Jun; 38(6):738-43. PubMed ID: 18218997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of tyrosine-sulfated proteins in retinal structure and function.
    Kanan Y; Al-Ubaidi MR
    Exp Eye Res; 2015 Apr; 133():126-31. PubMed ID: 25819460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins.
    Abello N; Kerstjens HA; Postma DS; Bischoff R
    J Proteome Res; 2009 Jul; 8(7):3222-38. PubMed ID: 19415921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.