BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17680786)

  • 1. Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.
    Parent KN; Suhanovsky MM; Teschke CM
    Mol Microbiol; 2007 Sep; 65(5):1300-10. PubMed ID: 17680786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo.
    Parent KN; Ranaghan MJ; Teschke CM
    Mol Microbiol; 2004 Nov; 54(4):1036-50. PubMed ID: 15522085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL/S substrate specificity based on substrate unfolding propensity.
    Parent KN; Teschke CM
    Cell Stress Chaperones; 2007; 12(1):20-32. PubMed ID: 17441504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly.
    D'Lima NG; Teschke CM
    J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins.
    Parent KN; Sinkovits RS; Suhanovsky MM; Teschke CM; Egelman EH; Baker TS
    Phys Biol; 2010 Dec; 7(4):045004. PubMed ID: 21149969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concerted mechanism for the suppression of a folding defect through interactions with chaperones.
    Doyle SM; Anderson E; Parent KN; Teschke CM
    J Biol Chem; 2004 Apr; 279(17):17473-82. PubMed ID: 14764588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype.
    Teschke CM
    Biochemistry; 1999 Mar; 38(10):2873-81. PubMed ID: 10074339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the coat protein A-domain in p22 bacteriophage maturation.
    Morris DS; Prevelige PE
    Viruses; 2014 Jul; 6(7):2708-22. PubMed ID: 25025835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus.
    Suhanovsky MM; Teschke CM
    Virology; 2011 Sep; 417(2):418-29. PubMed ID: 21784500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching.
    Suhanovsky MM; Parent KN; Dunn SE; Baker TS; Teschke CM
    Mol Microbiol; 2010 Sep; 77(6):1568-82. PubMed ID: 20659287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.
    Teschke CM; Parent KN
    Virology; 2010 Jun; 401(2):119-30. PubMed ID: 20236676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between coat and scaffolding proteins of phage P22 are altered in vitro by amino acid substitutions in coat protein that cause a cold-sensitive phenotype.
    Teschke CM; Fong DG
    Biochemistry; 1996 Nov; 35(47):14831-40. PubMed ID: 8942646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of multi-component spherical virus assembly: scaffolding protein contributes to the global stability of phage P22 procapsids.
    Parent KN; Zlotnick A; Teschke CM
    J Mol Biol; 2006 Jun; 359(4):1097-106. PubMed ID: 16697406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage P22 procapsids equilibrate with free coat protein subunits.
    Parent KN; Suhanovsky MM; Teschke CM
    J Mol Biol; 2007 Jan; 365(2):513-22. PubMed ID: 17067636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity.
    Teschke CM; King J
    Biochemistry; 1995 May; 34(20):6815-26. PubMed ID: 7756313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding defects caused by single amino acid substitutions in a subunit are not alleviated by assembly.
    Capen CM; Teschke CM
    Biochemistry; 2000 Feb; 39(5):1142-51. PubMed ID: 10653661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of subunit-subunit interactions in bacteriophage P22 procapsids by chemical cross-linking and mass spectrometry.
    Kang S; Hawkridge AM; Johnson KL; Muddiman DC; Prevelige PE
    J Proteome Res; 2006 Feb; 5(2):370-7. PubMed ID: 16457603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein.
    Aramli LA; Teschke CM
    J Biol Chem; 1999 Aug; 274(32):22217-24. PubMed ID: 10428787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties.
    Anderson E; Teschke CM
    Virology; 2003 Aug; 313(1):184-97. PubMed ID: 12951032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL.
    Doyle SM; Anderson E; Zhu D; Braswell EH; Teschke CM
    J Mol Biol; 2003 Sep; 332(4):937-51. PubMed ID: 12972263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.