BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 17681038)

  • 1. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution.
    Zhu X; Gui J; Dohkan J; Cheng L; Barnes PF; Su DM
    Aging Cell; 2007 Oct; 6(5):663-72. PubMed ID: 17681038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involution of the mammalian thymus, one of the leading regulators of aging.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1997; 11(5):421-40. PubMed ID: 9427047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-associated thymic atrophy is not associated with a deficiency in the CD44(+)CD25(-)CD3(-)CD4(-)CD8(-) thymocyte population.
    Aspinall R; Andrew D
    Cell Immunol; 2001 Sep; 212(2):150-7. PubMed ID: 11748931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    Anticancer Res; 2000; 20(3A):1871-88. PubMed ID: 10928121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of B cell precursors is impaired in thymic-deprived nude and old mice.
    Szabo P; Zhao K; Kirman I; Le Maoult J; Dyall R; Cruikshank W; Weksler ME
    J Immunol; 1998 Sep; 161(5):2248-53. PubMed ID: 9725218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early intrathymic precursor cells acquire a CD4(low) phenotype.
    Michie AM; Carlyle JR; Zúñiga-Pflücker JC
    J Immunol; 1998 Feb; 160(4):1735-41. PubMed ID: 9469431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice.
    Dudakov JA; Goldberg GL; Reiseger JJ; Vlahos K; Chidgey AP; Boyd RL
    J Immunol; 2009 Dec; 183(11):7084-94. PubMed ID: 19890044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymic involution: effect on T cell differentiation.
    Hirokawa K; Makinodan T
    J Immunol; 1975 Jun; 114(6):1659-64. PubMed ID: 1092757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early steps in T cell development are affected by aging.
    Thoman ML
    Cell Immunol; 1997 Jun; 178(2):117-23. PubMed ID: 9225002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro analysis of age-related changes in the developmental potential of bone marrow thymocyte progenitors.
    Sharp A; Kukulansky T; Globerson A
    Eur J Immunol; 1990 Dec; 20(12):2541-6. PubMed ID: 1980109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of age on the proportion of mouse bone marrow cells migrating in response to newborn thymus supernatant. Cell migration and thymus evolution in mice.
    Pérez-Mera ML; Carnero DG; Rey-Méndez M
    Thymus; 1991 Dec; 18(4):237-41. PubMed ID: 1776164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymopoiesis independent of common lymphoid progenitors.
    Allman D; Sambandam A; Kim S; Miller JP; Pagan A; Well D; Meraz A; Bhandoola A
    Nat Immunol; 2003 Feb; 4(2):168-74. PubMed ID: 12514733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of rearranged TCR transgenes to prevent age-associated thymic involution.
    Lacorazza HD; Guevara Patiño JA; Weksler ME; Radu D; Nikolić-Zugić J
    J Immunol; 1999 Oct; 163(8):4262-8. PubMed ID: 10510364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro analysis of thymic microenvironmental effects on bone marrow cells of severe combined immunodeficient (SCID) mice.
    Fridkis-Hareli M; Abel L; Globerson A
    Cell Immunol; 1993 Apr; 147(2):237-46. PubMed ID: 8453671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis.
    Dudakov JA; Goldberg GL; Reiseger JJ; Chidgey AP; Boyd RL
    J Immunol; 2009 May; 182(10):6247-60. PubMed ID: 19414778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes.
    Holländer GA; Wang B; Nichogiannopoulou A; Platenburg PP; van Ewijk W; Burakoff SJ; Gutierrez-Ramos JC; Terhorst C
    Nature; 1995 Jan; 373(6512):350-3. PubMed ID: 7830770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory CD4+ CD25+ T cells prevent thymic dysfunction in experimental chronic colitis.
    Veltkamp C; Ruhwald R; Veltkamp R; Giese T; Stremmel W
    Scand J Immunol; 2007 Dec; 66(6):636-44. PubMed ID: 18021363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Age-related effects in thymocytes differentiation: role of pineal gland peptide factors].
    Labunets' IF
    Fiziol Zh (1994); 2002; 48(1):91-7. PubMed ID: 11928640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines.
    Leposavić G; Perisić M
    Neuroimmunomodulation; 2008; 15(4-6):290-322. PubMed ID: 19047807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.