BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17681443)

  • 1. Hypolipidemic effects and mechanisms of Panax notoginseng on lipid profile in hyperlipidemic rats.
    Ji W; Gong BQ
    J Ethnopharmacol; 2007 Sep; 113(2):318-24. PubMed ID: 17681443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypolipidemic activity and mechanism of purified herbal extract of Salvia miltiorrhiza in hyperlipidemic rats.
    Ji W; Gong BQ
    J Ethnopharmacol; 2008 Sep; 119(2):291-8. PubMed ID: 18691646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats.
    Cao Y; Bei W; Hu Y; Cao L; Huang L; Wang L; Luo D; Chen Y; Yao X; He W; Liu X; Guo J
    Phytomedicine; 2012 Jun; 19(8-9):686-92. PubMed ID: 22554715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Celastrus Orbiculatus Thunb. Reduces Lipid Accumulation by Promoting Reverse Cholesterol Transport in Hyperlipidemic Mice.
    Zhang Y; Si Y; Zhai L; Guo S; Zhao J; Sang H; Pang X; Zhang X; Chen A; Qin S
    Lipids; 2016 Jun; 51(6):677-92. PubMed ID: 27017606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypolipidemic effect of Glycine tomentella root extract in hamsters.
    Ko YJ; Wu YW; Lin WC
    Am J Chin Med; 2004; 32(1):57-63. PubMed ID: 15154285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypolipidemic activity of Symplocos cochinchinensis S. Moore leaves in hyperlipidemic rats.
    Sunil C; Ignacimuthu S; Kumarappan C
    J Nat Med; 2012 Jan; 66(1):32-8. PubMed ID: 21681640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells.
    Liang XP; Zhang DQ; Chen YY; Guo R; Wang J; Wang CZ; Shi YH
    J Zhejiang Univ Sci B; 2015 Jun; 16(6):479-86. PubMed ID: 26055909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of antihyperlipidemic activity of ethanolic extract of Cassia auriculata flowers.
    Vijayaraj PS; Muthukumar K; Sabarirajan J; Nachiappan V
    Indian J Biochem Biophys; 2011 Feb; 48(1):54-8. PubMed ID: 21469603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypolipidemic effects of a new piperine derivative GB-N from Piper longum in high-fat diet-fed rats.
    Bao L; Bai S; Borijihan G
    Pharm Biol; 2012 Aug; 50(8):962-7. PubMed ID: 22494195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypolipidemic and Antioxidant Effects of Malus toringoides (Rehd.) Hughes Leaves in High-Fat-Diet-Induced Hyperlipidemic Rats.
    Huang S; Liu H; Meng N; Li B; Wang J
    J Med Food; 2017 Mar; 20(3):258-264. PubMed ID: 28296591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different response of senescent female Sprague-Dawley rats to gemfibrozil and rosiglitazone administration.
    Sanguino E; Roglans N; Alegret M; Sánchez RM; Vázquez-Carrera M; Laguna JC
    Exp Gerontol; 2005 Jul; 40(7):588-98. PubMed ID: 15998575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-hyperlipidemic properties of CM108 (a flavone derivative) in vitro and in vivo.
    Guo L; Hu WR; Lian JH; Ji W; Deng T; Qian M; Gong BQ
    Eur J Pharmacol; 2006 Dec; 551(1-3):80-6. PubMed ID: 17026988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism.
    Deng YF; Huang XL; Su M; Yu PX; Zhang Z; Liu QH; Wang GP; Liu MY
    Chin J Nat Med; 2018 Aug; 16(8):572-579. PubMed ID: 30197122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypolipidemic effects of Sophora flavescens and its constituents in poloxamer 407-induced hyperlipidemic and cholesterol-fed rats.
    Kim HY; Jeong DM; Jung HJ; Jung YJ; Yokozawa T; Choi JS
    Biol Pharm Bull; 2008 Jan; 31(1):73-8. PubMed ID: 18175945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro antioxidant and antihyperlipidemic activities of Toddalia asiatica (L) Lam. leaves in Triton WR-1339 and high fat diet induced hyperlipidemic rats.
    Irudayaraj SS; Sunil C; Duraipandiyan V; Ignacimuthu S
    Food Chem Toxicol; 2013 Oct; 60():135-40. PubMed ID: 23891761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antihyperlipidemic mechanism of high sulfate content ulvan in rats.
    Qi H; Sheng J
    Mar Drugs; 2015 May; 13(6):3407-21. PubMed ID: 26035020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high-fat high-fructose hamster as an animal model for niacin's biological activities in humans.
    Connolly BA; O'Connell DP; Lamon-Fava S; LeBlanc DF; Kuang YL; Schaefer EJ; Coppage AL; Benedict CR; Kiritsy CP; Bachovchin WW
    Metabolism; 2013 Dec; 62(12):1840-9. PubMed ID: 24035454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of theabrownin from pu-erh tea on the metabolism of serum lipids in rats: mechanism of action.
    Gong J; Peng C; Chen T; Gao B; Zhou H
    J Food Sci; 2010 Aug; 75(6):H182-9. PubMed ID: 20722930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters.
    Bilz S; Samuel V; Morino K; Savage D; Choi CS; Shulman GI
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E716-22. PubMed ID: 16291572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice.
    Ma Y; Jiang C; Yao N; Li Y; Wang Q; Fang S; Shang X; Zhao M; Che C; Ni Y; Zhang J; Yin Z
    J Ethnopharmacol; 2015 May; 166():286-96. PubMed ID: 25794806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.