These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 17681527)
1. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). Erthal M; Peres Silva C; Ian Samuels R J Insect Physiol; 2007 Nov; 53(11):1101-11. PubMed ID: 17681527 [TBL] [Abstract][Full Text] [Related]
2. Digestive enzymes of leaf-cutting ants, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini): distribution in the gut of adult workers and partial characterization. Erthal M; Peres Silva C; Samuels RI J Insect Physiol; 2004 Oct; 50(10):881-91. PubMed ID: 15518656 [TBL] [Abstract][Full Text] [Related]
3. Digestive enzyme compartmentalization and recycling and sites of absorption and secretion along the midgut of Dermestes maculatus (Coleoptera) larvae. Caldeira W; Dias AB; Terra WR; Ribeiro AF Arch Insect Biochem Physiol; 2007 Jan; 64(1):1-18. PubMed ID: 17167750 [TBL] [Abstract][Full Text] [Related]
4. Midgut pH profile and protein digestion in the larvae of Lutzomyia longipalpis (Diptera: Psychodidae). Fazito do Vale V; Pereira MH; Gontijo NF J Insect Physiol; 2007 Nov; 53(11):1151-9. PubMed ID: 17659300 [TBL] [Abstract][Full Text] [Related]
5. Digestive proteinases of larvae of the corn earworm, Heliothis zea: characterization, distribution, and dietary relationships. Lenz CJ; Kang J; Rice WC; McIntosh AH; Chippendale GM; Schubert KR Arch Insect Biochem Physiol; 1991; 16(3):201-12. PubMed ID: 1799675 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. Erlandson MA; Hegedus DD; Baldwin D; Noakes A; Toprak U Arch Insect Biochem Physiol; 2010 Oct; 75(2):70-91. PubMed ID: 20824821 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut. Volpicella M; Cordewener J; Jongsma MA; Gallerani R; Ceci LR; Beekwilder J J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):26-32. PubMed ID: 16269275 [TBL] [Abstract][Full Text] [Related]
9. Partial biochemical characterization of alpha- and beta-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Ghadamyari M; Hosseininaveh V; Sharifi M C R Biol; 2010 Mar; 333(3):197-204. PubMed ID: 20338537 [TBL] [Abstract][Full Text] [Related]
10. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Kotkar HM; Sarate PJ; Tamhane VA; Gupta VS; Giri AP J Insect Physiol; 2009 Aug; 55(8):663-70. PubMed ID: 19450602 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic properties of alpha- and beta-glocusidases extracted from midgut and salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Zibaee A; Bandani AR; Ramzi S C R Biol; 2009 Jul; 332(7):633-41. PubMed ID: 19523603 [TBL] [Abstract][Full Text] [Related]
12. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. Chougule NP; Doyle E; Fitches E; Gatehouse JA J Insect Physiol; 2008 Mar; 54(3):563-72. PubMed ID: 18241882 [TBL] [Abstract][Full Text] [Related]
13. A new strategy of endosymbiont midgut bacteria in ant (Ponerinae). Caetano FH; Zara FJ; Bution ML Micron; 2010 Apr; 41(3):183-6. PubMed ID: 20022511 [TBL] [Abstract][Full Text] [Related]
14. Digestion in adult females of the leaf-footed bug Leptoglossus zonatus (Hemiptera: Coreidae) with emphasis on the glycoside hydrolases α-amylase, α-galactosidase, and α-glucosidase. Rocha AA; Pinto CJ; Samuels RI; Alexandre D; Silva CP Arch Insect Biochem Physiol; 2014 Mar; 85(3):152-63. PubMed ID: 24481987 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic changes and the fate of digestive enzymes during induction of amber disease in larvae of the New Zealand grass grub (Costelytra zealandica). Gatehouse HS; Tan B; Christeller JT; Hurst MR; Marshall SD; Jackson TA J Invertebr Pathol; 2009 Jul; 101(3):215-21. PubMed ID: 19465026 [TBL] [Abstract][Full Text] [Related]
16. Modulation of digestive enzyme activities during ontogeny of Labeo rohita larvae fed ascorbic acid enriched zooplankton. Mitra G; Mukhopadhyay PK; Ayyappan S Comp Biochem Physiol A Mol Integr Physiol; 2008 Apr; 149(4):341-50. PubMed ID: 18329933 [TBL] [Abstract][Full Text] [Related]
17. Digestive proteolysis organization in two closely related Tenebrionid beetles: red flour beetle (Tribolium castaneum) and confused flour beetle (Tribolium confusum). Vinokurov KS; Elpidina EN; Zhuzhikov DP; Oppert B; Kodrik D; Sehnal F Arch Insect Biochem Physiol; 2009 Apr; 70(4):254-79. PubMed ID: 19294681 [TBL] [Abstract][Full Text] [Related]
18. Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Silva CP; Terra WR; Lima RM Arch Insect Biochem Physiol; 2001 May; 47(1):18-28. PubMed ID: 11317332 [TBL] [Abstract][Full Text] [Related]
19. Regional distribution and substrate specificity of digestive enzymes involved in terminal digestion in Musca domestica hind-midguts. Jordão BP; Terra WR Arch Insect Biochem Physiol; 1991; 17(2-3):157-68. PubMed ID: 1802031 [TBL] [Abstract][Full Text] [Related]
20. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti. Sasaki DY; Jacobowski AC; de Souza AP; Cardoso MH; Franco OL; Macedo ML Biochimie; 2015 May; 112():172-86. PubMed ID: 25796215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]