These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 17681553)
1. Reproduction numbers for epidemics on networks using pair approximation. Trapman P Math Biosci; 2007 Dec; 210(2):464-89. PubMed ID: 17681553 [TBL] [Abstract][Full Text] [Related]
2. Network epidemic models with two levels of mixing. Ball F; Neal P Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521 [TBL] [Abstract][Full Text] [Related]
3. The spread of infectious diseases in spatially structured populations: an invasory pair approximation. Bauch CT Math Biosci; 2005 Dec; 198(2):217-37. PubMed ID: 16112687 [TBL] [Abstract][Full Text] [Related]
4. The impact of network clustering and assortativity on epidemic behaviour. Badham J; Stocker R Theor Popul Biol; 2010 Feb; 77(1):71-5. PubMed ID: 19948179 [TBL] [Abstract][Full Text] [Related]
5. Epidemic modelling: aspects where stochasticity matters. Britton T; Lindenstrand D Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097 [TBL] [Abstract][Full Text] [Related]
6. The basic reproduction number and the probability of extinction for a dynamic epidemic model. Neal P Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870 [TBL] [Abstract][Full Text] [Related]
7. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Griffin JT; Garske T; Ghani AC; Clarke PS Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771 [TBL] [Abstract][Full Text] [Related]
8. Epidemic models with heterogeneous mixing and treatment. Brauer F Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538 [TBL] [Abstract][Full Text] [Related]
9. Cluster approximations for epidemic processes: a systematic description of correlations beyond the pair level. Petermann T; De Los Rios P J Theor Biol; 2004 Jul; 229(1):1-11. PubMed ID: 15178180 [TBL] [Abstract][Full Text] [Related]
10. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bacaër N Bull Math Biol; 2007 Apr; 69(3):1067-91. PubMed ID: 17265121 [TBL] [Abstract][Full Text] [Related]
11. Growth rate and basic reproduction number for population models with a simple periodic factor. Bacaër N; Ouifki R Math Biosci; 2007 Dec; 210(2):647-58. PubMed ID: 17822724 [TBL] [Abstract][Full Text] [Related]
12. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection. Massad E; Coutinho FA; Burattini MN; Amaku M Trop Med Int Health; 2010 Jan; 15(1):120-6. PubMed ID: 19891761 [TBL] [Abstract][Full Text] [Related]
13. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Tanner MW; Sattenspiel L; Ntaimo L Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149 [TBL] [Abstract][Full Text] [Related]
14. The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model. Inaba H; Nishiura H Math Biosci; 2008 Nov; 216(1):77-89. PubMed ID: 18768142 [TBL] [Abstract][Full Text] [Related]
15. A markov chain approach to calculate r(0) in stochastic epidemic models. Hernandez-Suarez CM J Theor Biol; 2002 Mar; 215(1):83-93. PubMed ID: 12051986 [TBL] [Abstract][Full Text] [Related]
16. An age-structured two-strain epidemic model with super-infection. Li XZ; Liu JX; Martcheva M Math Biosci Eng; 2010 Jan; 7(1):123-47. PubMed ID: 20104952 [TBL] [Abstract][Full Text] [Related]
17. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections. Hartemink NA; Randolph SE; Davis SA; Heesterbeek JA Am Nat; 2008 Jun; 171(6):743-54. PubMed ID: 18462128 [TBL] [Abstract][Full Text] [Related]
18. Estimation of the basic reproductive number (R0) for epidemic, highly pathogenic avian influenza subtype H5N1 spread. Ward MP; Maftei D; Apostu C; Suru A Epidemiol Infect; 2009 Feb; 137(2):219-26. PubMed ID: 18559127 [TBL] [Abstract][Full Text] [Related]
19. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. Yan P J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153 [TBL] [Abstract][Full Text] [Related]
20. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. Jesse M; Ezanno P; Davis S; Heesterbeek JA J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]