BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 17681584)

  • 1. NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies.
    Genz A; Baumgarten B; Goernitz M; Jekel M
    Water Res; 2008 Jan; 42(1-2):238-48. PubMed ID: 17681584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH).
    Badruzzaman M; Westerhoff P; Knappe DR
    Water Res; 2004 Nov; 38(18):4002-12. PubMed ID: 15380990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting anion breakthrough in granular ferric hydroxide (GFH) adsorption filters.
    Sperlich A; Schimmelpfennig S; Baumgarten B; Genz A; Amy G; Worch E; Jekel M
    Water Res; 2008 Apr; 42(8-9):2073-82. PubMed ID: 18242662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.
    Sperlich A; Werner A; Genz A; Amy G; Worch E; Jekel M
    Water Res; 2005 Mar; 39(6):1190-8. PubMed ID: 15766974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bromate removal from water by granular ferric hydroxide (GFH).
    Bhatnagar A; Choi Y; Yoon Y; Shin Y; Jeon BH; Kang JW
    J Hazard Mater; 2009 Oct; 170(1):134-40. PubMed ID: 19481866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH).
    Kumar E; Bhatnagar A; Ji M; Jung W; Lee SH; Kim SJ; Lee G; Song H; Choi JY; Yang JS; Jeon BH
    Water Res; 2009 Feb; 43(2):490-8. PubMed ID: 18995880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions.
    Tang Y; Guan X; Wang J; Gao N; McPhail MR; Chusuei CC
    J Hazard Mater; 2009 Nov; 171(1-3):774-9. PubMed ID: 19616377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH).
    Banerjee K; Amy GL; Prevost M; Nour S; Jekel M; Gallagher PM; Blumenschein CD
    Water Res; 2008 Jul; 42(13):3371-8. PubMed ID: 18538818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.
    Cornelissen ER; Moreau N; Siegers WG; Abrahamse AJ; Rietveld LC; Grefte A; Dignum M; Amy G; Wessels LP
    Water Res; 2008 Jan; 42(1-2):413-23. PubMed ID: 17706268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of natural organic matter using surfactant-modified iron oxide-coated sand.
    Ding C; Yang X; Liu W; Chang Y; Shang C
    J Hazard Mater; 2010 Feb; 174(1-3):567-72. PubMed ID: 19828248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of natural organic matter model compounds on the transformation of carbon tetrachloride by chloride green rust.
    Liang X; Butler EC
    Water Res; 2010 Apr; 44(7):2125-32. PubMed ID: 20045548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge.
    Moura MN; Martín MJ; Burguillo FJ
    J Hazard Mater; 2007 Oct; 149(1):42-8. PubMed ID: 17475400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of ferric and MIEX for the treatment of a humic rich water.
    Fearing DA; Banks J; Guyetand S; Monfort Eroles C; Jefferson B; Wilson D; Hillis P; Campbell AT; Parsons SA
    Water Res; 2004 May; 38(10):2551-8. PubMed ID: 15159158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A; Kornmüller A; Jekel M
    Water Res; 2004 Sep; 38(16):3523-30. PubMed ID: 15325178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of natural organic matter by cationic hydrogel with magnetic properties.
    Rao P; Lo IM; Yin K; Tang SC
    J Environ Manage; 2011 Jul; 92(7):1690-5. PubMed ID: 21377262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies.
    Guan XH; Wang J; Chusuei CC
    J Hazard Mater; 2008 Aug; 156(1-3):178-85. PubMed ID: 18206296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorptive separation of phosphate oxyanion from aqueous solution using an inorganic adsorbent.
    Saha B; Griffin L; Blunden H
    Environ Geochem Health; 2010 Aug; 32(4):341-7. PubMed ID: 20387091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of organic matter on arsenic removal during coagulation/flocculation treatment.
    Pallier V; Feuillade-Cathalifaud G; Serpaud B; Bollinger JC
    J Colloid Interface Sci; 2010 Feb; 342(1):26-32. PubMed ID: 19906383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption.
    Matsui Y; Fukuda Y; Inoue T; Matsushita T
    Water Res; 2003 Nov; 37(18):4413-24. PubMed ID: 14511712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.
    Pan B; Xiao L; Nie G; Pan B; Wu J; Lv L; Zhang W; Zheng S
    J Environ Monit; 2010 Jan; 12(1):305-10. PubMed ID: 20082026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.