These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17681677)

  • 1. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic velocity dispersion in bovine cortical bone: an experimental study.
    Haïat G; Sasso M; Naili S; Matsukawa M
    J Acoust Soc Am; 2008 Sep; 124(3):1811-21. PubMed ID: 19045671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone.
    Han SM; Rho JY
    Proc Inst Mech Eng H; 1998; 212(3):223-7. PubMed ID: 9695641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is quantitative ultrasound dependent on bone structure? A reflection.
    Njeh CF; Fuerst T; Diessel E; Genant HK
    Osteoporos Int; 2001; 12(1):1-15. PubMed ID: 11305077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro ultrasound measurement at the human femur.
    Padilla F; Akrout L; Kolta S; Latremouille C; Roux C; Laugier P
    Calcif Tissue Int; 2004 Nov; 75(5):421-30. PubMed ID: 15599500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation.
    Haïat G; Padilla F; Peyrin F; Laugier P
    J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband ultrasound attenuation value dependence on bone width in vitro.
    Serpe LJ; Rho JY
    Phys Med Biol; 1996 Jan; 41(1):197-202. PubMed ID: 8685255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations among bone mineral density, broadband ultrasound attenuation, mechanical indentation testing, and bone orientation in bovine femoral neck samples.
    Duquette J; Lin J; Hoffman A; Houde J; Ahmadi S; Baran D
    Calcif Tissue Int; 1997 Feb; 60(2):181-6. PubMed ID: 9056168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-megahertz ultrasonic properties of bovine cancellous bone.
    Hoffmeister BK; Whitten SA; Rho JY
    Bone; 2000 Jun; 26(6):635-42. PubMed ID: 10831936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of longitudinal wave properties in bovine cortical bone in vitro.
    Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections.
    Zheng R; Le LH; Sacchi MD; Ta D; Lou E
    Phys Med Biol; 2007 Oct; 52(19):5855-69. PubMed ID: 17881804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone.
    Yamamoto K; Nakatsuji T; Yaoi Y; Yamato Y; Yanagitani T; Matsukawa M; Yamazaki K; Matsuyama Y
    Ultrasonics; 2012 Mar; 52(3):377-86. PubMed ID: 22014464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based estimation of quantitative ultrasound variables at the proximal femur.
    Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the velocity and attenuation of ultrasound in bone on the mineral content.
    Tavakoli MB; Evans JA
    Phys Med Biol; 1991 Nov; 36(11):1529-37. PubMed ID: 1754623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: Phantom and in-vitro study.
    Tasinkevych Y; Falińska K; Lewin PA; Litniewski J
    Ultrasonics; 2019 Apr; 94():382-390. PubMed ID: 30001852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of velocity and attenuation of shear waves in bovine compact bone using ultrasonic spectroscopy.
    Wu J; Cubberley F
    Ultrasound Med Biol; 1997; 23(1):129-34. PubMed ID: 9080625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.