BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17681974)

  • 1. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction.
    Du QS; Wei YT; Pang ZW; Chou KC; Huang RB
    Protein Eng Des Sel; 2007 Sep; 20(9):417-23. PubMed ID: 17681974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting class I major histocompatibility complex (MHC) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression.
    Doytchinova IA; Flower DR
    J Chem Inf Model; 2007; 47(1):234-8. PubMed ID: 17238269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach.
    Tian F; Yang L; Lv F; Yang Q; Zhou P
    Amino Acids; 2009 Mar; 36(3):535-54. PubMed ID: 18575802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A set of new amino acid descriptors applied in prediction of MHC class I binding peptides.
    Liang G; Yang L; Chen Z; Mei H; Shu M; Li Z
    Eur J Med Chem; 2009 Mar; 44(3):1144-54. PubMed ID: 18662841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach.
    Christensen JK; Lamberth K; Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Buus S; Brunak S; Lund O
    Neural Comput; 2003 Dec; 15(12):2931-42. PubMed ID: 14629874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus-epitope vaccine design: informatic matching the HLA-I polymorphism to the virus genome.
    Vider-Shalit T; Raffaeli S; Louzoun Y
    Mol Immunol; 2007 Feb; 44(6):1253-61. PubMed ID: 16930710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Class II HLA-peptide binding prediction using structural principles.
    Mohanapriya A; Lulu S; Kayathri R; Kangueane P
    Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consensus motifs and peptide ligands of MHC class I molecules.
    Falk K; Rötzschke O
    Semin Immunol; 1993 Apr; 5(2):81-94. PubMed ID: 7684938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
    Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between Terasaki's HLA class I epitopes and HLAMatchmaker-defined eplets on HLA-A, -B and -C antigens.
    Duquesnoy RJ; Marrari M
    Tissue Antigens; 2009 Aug; 74(2):117-33. PubMed ID: 19497041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical factors in the development of fluorescence polarization-based peptide binding assays: an equilibrium study monitoring specific peptide binding to soluble HLA-A*0201.
    Buchli R; Vangundy RS; Giberson CF; Hildebrand WH
    J Immunol Methods; 2006 Jul; 314(1-2):38-53. PubMed ID: 16844138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational vaccinology: quantitative approaches.
    Flower DR; McSparron H; Blythe MJ; Zygouri C; Taylor D; Guan P; Wan S; Coveney PV; Walshe V; Borrow P; Doytchinova IA
    Novartis Found Symp; 2003; 254():102-20; discussion 120-5, 216-22, 250-2. PubMed ID: 14712934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.