BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17682834)

  • 1. Metabolic engineering of novel ketocarotenoid production in carrot plants.
    Jayaraj J; Devlin R; Punja Z
    Transgenic Res; 2008 Aug; 17(4):489-501. PubMed ID: 17682834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative expression of beta-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues.
    Wally O; Jayaraj J; Punja ZK
    Plant Cell Rep; 2008 Feb; 27(2):279-87. PubMed ID: 17924115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses.
    Jayaraj J; Punja ZK
    Plant Physiol Biochem; 2008 Oct; 46(10):875-83. PubMed ID: 18644734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)].
    Coe KM; Ellison S; Senalik D; Dawson J; Simon P
    Theor Appl Genet; 2021 Oct; 134(10):3351-3362. PubMed ID: 34282485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering.
    Pierce EC; LaFayette PR; Ortega MA; Joyce BL; Kopsell DA; Parrott WA
    PLoS One; 2015; 10(9):e0138196. PubMed ID: 26376481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis.
    Kathiresan S; Chandrashekar A; Ravishankar GA; Sarada R
    J Biotechnol; 2015 Feb; 196-197():33-41. PubMed ID: 25612872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato.
    Noh SA; Lee HS; Huh GH; Oh MJ; Paek KH; Shin JS; Bae JM
    Transgenic Res; 2012 Apr; 21(2):265-78. PubMed ID: 21660481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid Biosynthesis in Daucus carota.
    Simpson K; Cerda A; Stange C
    Subcell Biochem; 2016; 79():199-217. PubMed ID: 27485223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity.
    Bai C; Berman J; Farre G; Capell T; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.).
    Ma J; Li J; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ketocarotenoid formation in transgenic potato.
    Gerjets T; Sandmann G
    J Exp Bot; 2006; 57(14):3639-45. PubMed ID: 16957020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Formation and Sequestration of Nonendogenous Ketocarotenoids in Transgenic
    Mortimer CL; Misawa N; Perez-Fons L; Robertson FP; Harada H; Bramley PM; Fraser PD
    Plant Physiol; 2017 Mar; 173(3):1617-1635. PubMed ID: 28153925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene.
    Zhu C; Gerjets T; Sandmann G
    Transgenic Res; 2007 Dec; 16(6):813-21. PubMed ID: 17940844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions.
    Kim JE; Cheng KM; Craft NE; Hamberger B; Douglas CJ
    Phytochemistry; 2010 Feb; 71(2-3):168-78. PubMed ID: 19939422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Pigment Accumulation in Carrot Leaves and Roots during Two Growing Periods.
    Perrin F; Brahem M; Dubois-Laurent C; Huet S; Jourdan M; Geoffriau E; Peltier D; Gagné S
    J Agric Food Chem; 2016 Feb; 64(4):906-12. PubMed ID: 26752004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus.
    Oleszkiewicz T; Klimek-Chodacka M; Milewska-Hendel A; Zubko M; Stróż D; Kurczyńska E; Boba A; Szopa J; Baranski R
    Planta; 2018 Dec; 248(6):1455-1471. PubMed ID: 30132151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of carotenoids in carrot: an underground story comes to light.
    Rodriguez-Concepcion M; Stange C
    Arch Biochem Biophys; 2013 Nov; 539(2):110-6. PubMed ID: 23876238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis.
    Lotan T; Hirschberg J
    FEBS Lett; 1995 May; 364(2):125-8. PubMed ID: 7750556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids.
    Nogueira M; Enfissi EMA; Welsch R; Beyer P; Zurbriggen MD; Fraser PD
    Metab Eng; 2019 Mar; 52():243-252. PubMed ID: 30578862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii.
    León R; Couso I; Fernández E
    J Biotechnol; 2007 Jun; 130(2):143-52. PubMed ID: 17433482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.