These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 17683049)
1. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Giribaldi M; Perugini I; Sauvage FX; Schubert A Proteomics; 2007 Sep; 7(17):3154-70. PubMed ID: 17683049 [TBL] [Abstract][Full Text] [Related]
2. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598 [TBL] [Abstract][Full Text] [Related]
3. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
4. Proteome analysis of grape skins during ripening. Deytieux C; Geny L; Lapaillerie D; Claverol S; Bonneu M; Donèche B J Exp Bot; 2007; 58(7):1851-62. PubMed ID: 17426054 [TBL] [Abstract][Full Text] [Related]
5. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
6. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Porubleva L; Vander Velden K; Kothari S; Oliver DJ; Chitnis PR Electrophoresis; 2001 May; 22(9):1724-38. PubMed ID: 11425228 [TBL] [Abstract][Full Text] [Related]
7. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. Kim ST; Wang Y; Kang SY; Kim SG; Rakwal R; Kim YC; Kang KY J Proteome Res; 2009 Jul; 8(7):3598-605. PubMed ID: 19472976 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Vincent D; Ergül A; Bohlman MC; Tattersall EA; Tillett RL; Wheatley MD; Woolsey R; Quilici DR; Joets J; Schlauch K; Schooley DA; Cushman JC; Cramer GR J Exp Bot; 2007; 58(7):1873-92. PubMed ID: 17443017 [TBL] [Abstract][Full Text] [Related]
9. Optimization of protein extraction and solubilization for mature grape berry clusters. Vincent D; Wheatley MD; Cramer GR Electrophoresis; 2006 May; 27(9):1853-65. PubMed ID: 16586412 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. Di Carli M; Zamboni A; Pè ME; Pezzotti M; Lilley KS; Benvenuto E; Desiderio A J Proteome Res; 2011 Feb; 10(2):429-46. PubMed ID: 20945943 [TBL] [Abstract][Full Text] [Related]
11. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
12. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C; Tira-Umphon A; Terrier N; Zouine M; Severac D; Roustan JP Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of up-accumulated proteins associated with fruit quality during autumn olive (Elaeagnus umbellata) fruit ripening. Wu MC; Hu HT; Yang L; Yang L J Agric Food Chem; 2011 Jan; 59(2):577-83. PubMed ID: 21175188 [TBL] [Abstract][Full Text] [Related]
15. A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. Giribaldi M; Purrotti M; Pacifico D; Santini D; Mannini F; Caciagli P; Rolle L; Cavallarin L; Giuffrida MG; Marzachì C J Proteomics; 2011 Dec; 75(1):306-15. PubMed ID: 21856458 [TBL] [Abstract][Full Text] [Related]
16. Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Fernando DD Proteomics; 2005 Dec; 5(18):4917-26. PubMed ID: 16247732 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Rampitsch C; Bykova NV; McCallum B; Beimcik E; Ens W Proteomics; 2006 Mar; 6(6):1897-907. PubMed ID: 16479535 [TBL] [Abstract][Full Text] [Related]
18. Application of two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for proteomic analysis of the sexually transmitted parasite Trichomonas vaginalis. De Jesus JB; Cuervo P; Junqueira M; Britto C; Silva-Filho FC; Sabóia-Vahia L; González LJ; Barbosa Domont G J Mass Spectrom; 2007 Nov; 42(11):1463-73. PubMed ID: 17960578 [TBL] [Abstract][Full Text] [Related]
19. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C; Shin R; Liu W; Thomas MR; Schachtman DP J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. Sharathchandra RG; Stander C; Jacobson D; Ndimba B; Vivier MA PLoS One; 2011 Feb; 6(2):e14708. PubMed ID: 21379583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]