These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 17684551)
21. Differential use of p24 family members as cargo receptors for the transport of glycosylphosphatidylinositol-anchored proteins and Wnt1. Tashima Y; Hirata T; Maeda Y; Murakami Y; Kinoshita T J Biochem; 2022 Jan; 171(1):75-83. PubMed ID: 34647572 [TBL] [Abstract][Full Text] [Related]
23. Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. Kidane AH; Cruijsen PM; Ortiz-Bazan MA; Vaudry H; Leprince J; Kuijpers-Kwant FJ; Roubos EW; Jenks BG Peptides; 2007 Sep; 28(9):1790-6. PubMed ID: 17482316 [TBL] [Abstract][Full Text] [Related]
24. In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor. de Groot DM; Coenen AJ; Verhofstad A; van Herp F; Martens GJ Mol Endocrinol; 2006 Nov; 20(11):2987-98. PubMed ID: 16887884 [TBL] [Abstract][Full Text] [Related]
25. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation. Berghs CA; Tanaka S; Van Strien FJ; Kurabuchi S; Roubos EW J Histochem Cytochem; 1997 Dec; 45(12):1673-82. PubMed ID: 9389771 [TBL] [Abstract][Full Text] [Related]
26. A comprehensive overview of the vertebrate p24 family: identification of a novel tissue-specifically expressed member. Strating JR; van Bakel NH; Leunissen JA; Martens GJ Mol Biol Evol; 2009 Aug; 26(8):1707-14. PubMed ID: 19429673 [TBL] [Abstract][Full Text] [Related]
27. 3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport. Nagae M; Hirata T; Morita-Matsumoto K; Theiler R; Fujita M; Kinoshita T; Yamaguchi Y J Mol Biol; 2016 Oct; 428(20):4087-4099. PubMed ID: 27569046 [TBL] [Abstract][Full Text] [Related]
28. In vivo trafficking and localization of p24 proteins in plant cells. Langhans M; Marcote MJ; Pimpl P; Virgili-López G; Robinson DG; Aniento F Traffic; 2008 May; 9(5):770-85. PubMed ID: 18266912 [TBL] [Abstract][Full Text] [Related]
29. Prohormone transport through the secretory pathway of neuroendocrine cells. Kuiper RP; Martens GJ Biochem Cell Biol; 2000; 78(3):289-98. PubMed ID: 10949080 [TBL] [Abstract][Full Text] [Related]
30. Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads. Carotti M; Nabissi M; Mosconi G; Gangnon F; Lihrmann I; Vaudry H; Polzonetti-Magni AM Ann N Y Acad Sci; 2005 Apr; 1040():261-3. PubMed ID: 15891038 [TBL] [Abstract][Full Text] [Related]
31. A proteome map of the pituitary melanotrope cell activated by black-background adaptation of Xenopus laevis. Devreese B; Sergeant K; Van Bakel NH; Debyser G; Van Beeumen J; Martens GJ; Van Herp F Proteomics; 2010 Feb; 10(3):574-80. PubMed ID: 20029839 [TBL] [Abstract][Full Text] [Related]
32. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Zhang H; Langeslag M; Breukels V; Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2008 Mar; 156(1):104-12. PubMed ID: 18206885 [TBL] [Abstract][Full Text] [Related]
33. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690 [TBL] [Abstract][Full Text] [Related]
34. Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells. Kuribara M; Kidane AH; Vos GA; de Gouw D; Roubos EW; Scheenen WJ; Jenks BG J Neuroendocrinol; 2011 Mar; 23(3):261-8. PubMed ID: 21129045 [TBL] [Abstract][Full Text] [Related]
35. Intracellular sites of proteolytic processing of pro-opiomelanocortin in melanotrophs and corticotrophs in rat pituitary. Tanaka S; Nomizu M; Kurosumi K J Histochem Cytochem; 1991 Jun; 39(6):809-21. PubMed ID: 1851777 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Xenopus melanotrope cell size and POMC-gene expression. Corstens GJ; Roubos EW; Jenks BG; Van Erp PE Ann N Y Acad Sci; 2005 Apr; 1040():269-72. PubMed ID: 15891040 [TBL] [Abstract][Full Text] [Related]
37. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis. Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760 [TBL] [Abstract][Full Text] [Related]
38. Molecular probing of the secretory pathway in peptide hormone-producing cells. Holthuis JC; Jansen EJ; van Riel MC; Martens GJ J Cell Sci; 1995 Oct; 108 ( Pt 10)():3295-305. PubMed ID: 7593290 [TBL] [Abstract][Full Text] [Related]
39. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Jenks BG; Kidane AH; Scheenen WJ; Roubos EW Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778 [TBL] [Abstract][Full Text] [Related]
40. Brain-derived neurotrophic factor stimulates growth of pituitary melanotrope cells in an autocrine way. Kuribara M; Hess MW; Cazorla M; Roubos EW; Scheenen WJ; Jenks BG Gen Comp Endocrinol; 2011 Jan; 170(1):156-61. PubMed ID: 20888824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]