These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 17685238)

  • 1. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation.
    Zeng HL; Li HF; Wang X; Lin JM
    Talanta; 2006 Mar; 69(1):226-31. PubMed ID: 18970558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral separations on multichannel microfluidic chips.
    Gao Y; Shen Z; Wang H; Dai Z; Lin B
    Electrophoresis; 2005 Dec; 26(24):4774-9. PubMed ID: 16278920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 3-amino-derivative of gamma-cyclodextrin as chiral selector of Dns-amino acids in electrokinetic chromatography.
    Giuffrida A; Contino A; Maccarrone G; Messina M; Cucinotta V
    J Chromatogr A; 2009 Apr; 1216(17):3678-86. PubMed ID: 19124131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuneable separation in elastomeric microfluidics devices.
    Beech JP; Tegenfeldt JO
    Lab Chip; 2008 May; 8(5):657-9. PubMed ID: 18432332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase.
    Blas M; Delaunay N; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels.
    Ebara M; Hoffman JM; Hoffman AS; Stayton PS
    Lab Chip; 2006 Jul; 6(7):843-8. PubMed ID: 16804587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic baker's transformation device for three-dimensional rapid mixing.
    Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Watanabe M; Okamoto Y; Tokeshi M; Shamoto E; Baba Y
    Lab Chip; 2011 Oct; 11(19):3356-60. PubMed ID: 21845274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochromatography in poly(dimethyl)siloxane microchips using organic monolithic stationary phases.
    Faure K; Blas M; Yassine O; Delaunay N; Crétier G; Albert M; Rocca JL
    Electrophoresis; 2007 Jun; 28(11):1668-73. PubMed ID: 17450536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies.
    Ros A; Hellmich W; Duong T; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):65-72. PubMed ID: 15288941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.