BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17685580)

  • 1. Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol.
    Matsumura S; Ajima K; Yudasaka M; Iijima S; Shiba K
    Mol Pharm; 2007; 4(5):723-9. PubMed ID: 17685580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer.
    Matsumura S; Sato S; Yudasaka M; Tomida A; Tsuruo T; Iijima S; Shiba K
    Mol Pharm; 2009; 6(2):441-7. PubMed ID: 19718797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate.
    Murakami T; Fan J; Yudasaka M; Iijima S; Shiba K
    Mol Pharm; 2006; 3(4):407-14. PubMed ID: 16889434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro.
    Murakami T; Ajima K; Miyawaki J; Yudasaka M; Iijima S; Shiba K
    Mol Pharm; 2004; 1(6):399-405. PubMed ID: 16028351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy.
    Murakami T; Sawada H; Tamura G; Yudasaka M; Iijima S; Tsuchida K
    Nanomedicine (Lond); 2008 Aug; 3(4):453-63. PubMed ID: 18694307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted killing of cancer cells in vivo and in vitro with IGF-IR antibody-directed carbon nanohorns based drug delivery.
    Li N; Zhao Q; Shu C; Ma X; Li R; Shen H; Zhong W
    Int J Pharm; 2015 Jan; 478(2):644-54. PubMed ID: 25510600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanohorns as anticancer drug carriers.
    Ajima K; Yudasaka M; Murakami T; Maigné A; Shiba K; Iijima S
    Mol Pharm; 2005; 2(6):475-80. PubMed ID: 16323954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Peptide aptamers and nano-carriers for cancer therapy].
    Shiba K
    Gan To Kagaku Ryoho; 2009 Mar; 36(3):362-5. PubMed ID: 19295259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and cytotoxic activity of platinum complex immobilized by branched polyethylene glycol.
    Ren Y; Zhang H; Huang J
    Bioorg Med Chem Lett; 2005 Oct; 15(20):4479-83. PubMed ID: 16085413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns.
    Ajima K; Yudasaka M; Maigné A; Miyawaki J; Iijima S
    J Phys Chem B; 2006 Mar; 110(11):5773-8. PubMed ID: 16539524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice.
    Kim JH; Kim YS; Park K; Lee S; Nam HY; Min KH; Jo HG; Park JH; Choi K; Jeong SY; Park RW; Kim IS; Kim K; Kwon IC
    J Control Release; 2008 Apr; 127(1):41-9. PubMed ID: 18234388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis.
    Nakamura M; Tahara Y; Ikehara Y; Murakami T; Tsuchida K; Iijima S; Waga I; Yudasaka M
    Nanotechnology; 2011 Nov; 22(46):465102. PubMed ID: 22024636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular accumulation and cytotoxicity of macromolecular platinum complexes in cisplatin-resistant tumor cells.
    Garmann D; Warnecke A; Kalayda GV; Kratz F; Jaehde U
    J Control Release; 2008 Oct; 131(2):100-6. PubMed ID: 18691617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns.
    Cioffi C; Campidelli S; Sooambar C; Marcaccio M; Marcolongo G; Meneghetti M; Paolucci D; Paolucci F; Ehli C; Rahman GM; Sgobba V; Guldi DM; Prato M
    J Am Chem Soc; 2007 Apr; 129(13):3938-45. PubMed ID: 17343379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns.
    Ajima K; Murakami T; Mizoguchi Y; Tsuchida K; Ichihashi T; Iijima S; Yudasaka M
    ACS Nano; 2008 Oct; 2(10):2057-64. PubMed ID: 19206452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures.
    Sano K; Sasaki H; Shiba K
    J Am Chem Soc; 2006 Feb; 128(5):1717-22. PubMed ID: 16448147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility.
    Zhang M; Yudasaka M; Ajima K; Miyawaki J; Iijima S
    ACS Nano; 2007 Nov; 1(4):265-72. PubMed ID: 19206676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells.
    Sahu A; Bora U; Kasoju N; Goswami P
    Acta Biomater; 2008 Nov; 4(6):1752-61. PubMed ID: 18524701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells.
    Mai J; Song S; Rui M; Liu D; Ding Q; Peng J; Xu Y
    J Control Release; 2009 Nov; 139(3):174-81. PubMed ID: 19576253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate.
    Li X; Li R; Qian X; Ding Y; Tu Y; Guo R; Hu Y; Jiang X; Guo W; Liu B
    Eur J Pharm Biopharm; 2008 Nov; 70(3):726-34. PubMed ID: 18634874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.