These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 1768636)
1. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: I. Drug release. Yoshida R; Sakai K; Ukano T; Sakurai Y; Bae YH; Kim SW J Biomater Sci Polym Ed; 1991; 3(2):155-62. PubMed ID: 1768636 [TBL] [Abstract][Full Text] [Related]
2. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. Yoshida R; Sakai K; Okano T; Sakurai Y J Biomater Sci Polym Ed; 1992; 3(3):243-52. PubMed ID: 1610734 [TBL] [Abstract][Full Text] [Related]
3. Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. Okuyama Y; Yoshida R; Sakai K; Okano T; Sakurai Y J Biomater Sci Polym Ed; 1993; 4(5):545-56. PubMed ID: 8241069 [TBL] [Abstract][Full Text] [Related]
4. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. Yoshida R; Sakai K; Okano T; Sakurai Y J Biomater Sci Polym Ed; 1994; 6(6):585-98. PubMed ID: 7873510 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Ankareddi I; Brazel CS Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371 [TBL] [Abstract][Full Text] [Related]
6. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712 [TBL] [Abstract][Full Text] [Related]
7. Surface-Selective Grafting of Crosslinking Layers on Hydrogel Surfaces via Two Different Mechanisms of Photopolymerization for Site-Controllable Release. Zhang J; Nie J; Zhu X Macromol Rapid Commun; 2018 Oct; 39(20):e1800144. PubMed ID: 29806085 [TBL] [Abstract][Full Text] [Related]
8. Thermally-triggered 'off-on-off' response of gadolinium-hydrogel-lipid hybrid nanoparticles defines a customizable temperature window for non-invasive magnetic resonance imaging thermometry. Shuhendler AJ; Staruch R; Oakden W; Gordijo CR; Rauth AM; Stanisz GJ; Chopra R; Wu XY J Control Release; 2012 Feb; 157(3):478-84. PubMed ID: 21939700 [TBL] [Abstract][Full Text] [Related]
9. Injectable On-Demand Pulsatile Drug Delivery Hydrogels Using Alternating Magnetic Field-Triggered Polymer Glass Transitions. Campbell S; Preciado Rivera N; Said S; Lam A; Weir L; Gour J; Smeets NMB; Hoare T ACS Appl Mater Interfaces; 2023 Oct; 15(42):48892-48902. PubMed ID: 37816152 [TBL] [Abstract][Full Text] [Related]
10. Responsive and recognitive hydrogels using star polymers. Oral E; Peppas NA J Biomed Mater Res A; 2004 Mar; 68(3):439-47. PubMed ID: 14762923 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
12. "On-off" thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels. Bae YH; Okano T; Kim SW Pharm Res; 1991 May; 8(5):624-8. PubMed ID: 1866377 [TBL] [Abstract][Full Text] [Related]
13. Hydrogels: swelling, drug loading, and release. Kim SW; Bae YH; Okano T Pharm Res; 1992 Mar; 9(3):283-90. PubMed ID: 1614957 [TBL] [Abstract][Full Text] [Related]
14. Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Castelli F; Pitarresi G; Giammona G Biomaterials; 2000 Apr; 21(8):821-33. PubMed ID: 10721751 [TBL] [Abstract][Full Text] [Related]
15. Slow releasing of ara-C from poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels implanted subcutaneously in the back of rats. Blanco MD; Trigo RM; Teijón C; Gómez C; Teijón JM Biomaterials; 1998; 19(7-9):861-9. PubMed ID: 9663763 [TBL] [Abstract][Full Text] [Related]
16. Sequential intracellular release of water-soluble cargos from Shell-crosslinked polymersomes. Du F; Bobbala S; Yi S; Scott EA J Control Release; 2018 Jul; 282():90-100. PubMed ID: 29601932 [TBL] [Abstract][Full Text] [Related]
17. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
18. Increasing the anticancer performance of bufalin (BUF) by introducing an endosome-escaping polymer and tumor-targeting peptide in the design of a polymeric prodrug. Shi XJ; Qiu YY; Yu H; Liu C; Yuan YX; Yin PH; Liu T Colloids Surf B Biointerfaces; 2018 Jun; 166():224-234. PubMed ID: 29602078 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Cross-linked Poly (N-isopropylacrylamide) Magnetic Nano Composite for Application in the Controlled Release of Doxorubicin. Kaamyabi S; Badrian A; Akbarzadeh A Pharm Nanotechnol; 2017; 5(1):67-75. PubMed ID: 28948911 [TBL] [Abstract][Full Text] [Related]
20. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA). Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]