BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 17686490)

  • 1. Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM.
    Friedrichs J; Taubenberger A; Franz CM; Muller DJ
    J Mol Biol; 2007 Sep; 372(3):594-607. PubMed ID: 17686490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel subcellular collagen organization process visualized by total internal reflection fluorescence microscopy.
    Young EF; Marcantonio EE
    Cell Commun Adhes; 2007; 14(5):169-80. PubMed ID: 18163228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices.
    Gruschwitz R; Friedrichs J; Valtink M; Franz CM; Müller DJ; Funk RH; Engelmann K
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6303-10. PubMed ID: 20631237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Procollagen trafficking, processing and fibrillogenesis.
    Canty EG; Kadler KE
    J Cell Sci; 2005 Apr; 118(Pt 7):1341-53. PubMed ID: 15788652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells.
    Murasawa Y; Hayashi T; Wang PC
    Exp Cell Res; 2008 Dec; 314(20):3638-53. PubMed ID: 18845143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices.
    Petroll WM; Ma L
    Cell Motil Cytoskeleton; 2003 Aug; 55(4):254-64. PubMed ID: 12845599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofunctionalization of a generic collagenous triple helix with the α2β1 integrin binding site allows molecular force measurements.
    Niland S; Westerhausen C; Schneider SW; Eckes B; Schneider MF; Eble JA
    Int J Biochem Cell Biol; 2011 May; 43(5):721-31. PubMed ID: 21262375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications.
    Cisneros DA; Friedrichs J; Taubenberger A; Franz CM; Muller DJ
    Small; 2007 Jun; 3(6):956-63. PubMed ID: 17394282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal pigment epithelium cell alignment on nanostructured collagen matrices.
    Ulbrich S; Friedrichs J; Valtink M; Murovski S; Franz CM; Müller DJ; Funk RH; Engelmann K
    Cells Tissues Organs; 2011; 194(6):443-56. PubMed ID: 21411961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution AFM imaging of intact and fractured trabecular bone.
    Hassenkam T; Fantner GE; Cutroni JA; Weaver JC; Morse DE; Hansma PK
    Bone; 2004 Jul; 35(1):4-10. PubMed ID: 15207735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen.
    Vuoriluoto K; Jokinen J; Kallio K; Salmivirta M; Heino J; Ivaska J
    Exp Cell Res; 2008 Nov; 314(18):3369-81. PubMed ID: 18657535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycation endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen matrix.
    McCarthy AD; Uemura T; Etcheverry SB; Cortizo AM
    Int J Biochem Cell Biol; 2004 May; 36(5):840-8. PubMed ID: 15006636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of the fibroblast-traction machinery.
    Sawhney RK; Howard J
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):175-85. PubMed ID: 15146536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype.
    McDaniel DP; Shaw GA; Elliott JT; Bhadriraju K; Meuse C; Chung KH; Plant AL
    Biophys J; 2007 Mar; 92(5):1759-69. PubMed ID: 17158565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in human type I collagen fibrils investigated by force spectroscopy.
    Graham JS; Vomund AN; Phillips CL; Grandbois M
    Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical properties of thin films of type I collagen fibrils.
    Chung KH; Bhadriraju K; Spurlin TA; Cook RF; Plant AL
    Langmuir; 2010 Mar; 26(5):3629-36. PubMed ID: 20104910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinase activity synergizes with alpha2beta1 integrins to enhance collagen remodeling.
    Phillips JA; Bonassar LJ
    Exp Cell Res; 2005 Oct; 310(1):79-87. PubMed ID: 16098964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.