BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17686518)

  • 1. A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate.
    Meng Y; Lin BL
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):172-86. PubMed ID: 17686518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotoxicity quantitative structure-activity relationships for alcohol ethoxylate mixtures based on substance-specific toxicity predictions.
    Boeije GM; Cano ML; Marshall SJ; Belanger SE; Van Compernolle R; Dorn PB; Gümbel H; Toy R; Wind T
    Ecotoxicol Environ Saf; 2006 May; 64(1):75-84. PubMed ID: 16256196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tiered approach for aquatic risk assessment of alcohol ethoxylates.
    Ren S
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):187-99. PubMed ID: 18022692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic risk assessment of alcohol ethoxylates in North America and Europe.
    Belanger SE; Dorn PB; Toy R; Boeije G; Marshall SJ; Wind T; Van Compernolle R; Zeller D
    Ecotoxicol Environ Saf; 2006 May; 64(1):85-99. PubMed ID: 16439022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity and relationship between metabolites and ecotoxicity during the biodegradation process of non-ionic surfactants: fatty-alcohol ethoxylates, nonylphenol polyethoxylate and alkylpolyglucosides.
    Jurado E; Fernández-Serrano M; Núñez-Olea J; Luzón G; Lechuga M
    Water Sci Technol; 2009; 59(12):2351-8. PubMed ID: 19542640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data.
    Lin CC; Wang YC; Chen JY; Liou YJ; Bai YM; Lai IC; Chen TT; Chiu HW; Li YC
    Comput Methods Programs Biomed; 2008 Aug; 91(2):91-9. PubMed ID: 18508152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubility Constraints on Aquatic Ecotoxicity Testing of Anionic Surfactants.
    Hammer J; Tukker AM; Postma JF; Haftka JJ; Hermens JLM; de Voogt P; Kraak MHS
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):99-104. PubMed ID: 29858623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network.
    Jiao L
    Chemosphere; 2010 Jul; 80(6):671-5. PubMed ID: 20452639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the Toxicity Index model and isoblogram representation.
    Boillot C; Perrodin Y
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):252-9. PubMed ID: 17945345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E; Sengorur B; Koklu R
    J Environ Manage; 2009 Feb; 90(2):1229-35. PubMed ID: 18691805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design.
    Huang RB; Du QS; Wei YT; Pang ZW; Wei H; Chou KC
    J Theor Biol; 2009 Feb; 256(3):428-35. PubMed ID: 18835398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase.
    D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2009 Jul; 646(1-2):47-61. PubMed ID: 19523555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna.
    Brausch JM; Beall B; Smith PN
    Bull Environ Contam Toxicol; 2007 Jun; 78(6):510-4. PubMed ID: 17701440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.
    Yang L; Wang P; Jiang Y; Chen J
    J Chem Inf Model; 2005; 45(6):1804-11. PubMed ID: 16309287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute and chronic aquatic toxicity structure-activity relationships for alcohol ethoxylates.
    Morrall DD; Belanger SE; Dunphy JC
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):381-9. PubMed ID: 14575678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of DEMETRA individual QSARs with an index for evaluation of uncertainty.
    Porcelli C; Roncaglioni A; Chana A; Benfenati E
    Chemosphere; 2008 May; 71(10):1845-52. PubMed ID: 18384837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico prediction of blood brain barrier permeability: an Artificial Neural Network model.
    Garg P; Verma J
    J Chem Inf Model; 2006; 46(1):289-97. PubMed ID: 16426064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicity and biodegradability of an alkyl ethoxysulphate surfactant in coastal waters.
    Sibila MA; Garrido MC; Perales JA; Quiroga JM
    Sci Total Environ; 2008 May; 394(2-3):265-74. PubMed ID: 18304608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.