These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17686576)

  • 1. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation.
    Song S; Yao J; He Z; Qiu J; Chen J
    J Hazard Mater; 2008 Mar; 152(1):204-10. PubMed ID: 17686576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization of C.I. Reactive Yellow 84 in aqueous solution by electrocoagulation enhanced with ozone: influence of operating conditions.
    He ZQ; Song S; Qiu JP; Yao J; Cao XY; Hu YQ; Chen JM
    Environ Technol; 2007 Nov; 28(11):1257-63. PubMed ID: 18290535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jan; 161(2-3):1369-76. PubMed ID: 18550279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decolorization and transformation of anthraquinone dye Reactive Blue 19 by ozonation.
    Fanchiang JM; Tseng DH
    Environ Technol; 2009 Feb; 30(2):161-72. PubMed ID: 19278157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.
    Daneshvar N; Oladegaragoze A; Djafarzadeh N
    J Hazard Mater; 2006 Feb; 129(1-3):116-22. PubMed ID: 16203084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of some operational parameters on the decolorization of textile effluents and dye solutions by ozonation.
    Sevimli MF; Sarikaya HZ
    Environ Technol; 2005 Feb; 26(2):135-43. PubMed ID: 15791794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections.
    Daneshvar N; Sorkhabi HA; Kasiri MB
    J Hazard Mater; 2004 Aug; 112(1-2):55-62. PubMed ID: 15225930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of azo dye Acid Red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism.
    Gao M; Zeng Z; Sun B; Zou H; Chen J; Shao L
    Chemosphere; 2012 Sep; 89(2):190-7. PubMed ID: 22704973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decolorization of dye RB-19 solution in a continuous ozone process.
    Hsu YC; Chen YF; Chen JH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):127-44. PubMed ID: 15030147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decolorization of textile wastewater by ozonation and Fenton's process.
    Sevimli MF; Kinaci C
    Water Sci Technol; 2002; 45(12):279-86. PubMed ID: 12201113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon.
    Konsowa AH; Ossman ME; Chen Y; Crittenden JC
    J Hazard Mater; 2010 Apr; 176(1-3):181-5. PubMed ID: 19959289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron.
    Le C; Wu JH; Li P; Wang X; Zhu NW; Wu PX; Yang B
    Water Sci Technol; 2011; 64(3):754-9. PubMed ID: 22097057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process.
    Daneshvar N; Khataee AR; Djafarzadeh N
    J Hazard Mater; 2006 Oct; 137(3):1788-95. PubMed ID: 16806684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study.
    Khataee AR; Vatanpour V; Amani Ghadim AR
    J Hazard Mater; 2009 Jan; 161(2-3):1225-33. PubMed ID: 18524478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid and low energy consumption method to decolorize the high concentration triphenylmethane dye wastewater: operational parameters optimization for the ultrasonic-assisted ozone oxidation process.
    Zhou XJ; Guo WQ; Yang SS; Ren NQ
    Bioresour Technol; 2012 Feb; 105():40-7. PubMed ID: 22189075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations.
    Sun Y; Liu Y; Li R; Xue G; Ognier S
    Chemosphere; 2016 Jul; 155():243-249. PubMed ID: 27124311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of some water-quality and operating parameters on the decolorization of reactive dye solutions by ozone.
    Wu J; Wang T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1335-47. PubMed ID: 11545357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS
    J Hazard Mater; 2008 May; 153(1-2):194-200. PubMed ID: 17875363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC).
    Daneshvar N; Khataee AR; Amani Ghadim AR; Rasoulifard MH
    J Hazard Mater; 2007 Sep; 148(3):566-72. PubMed ID: 17428605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical removal of indium ions from aqueous solution using iron electrodes.
    Chou WL; Huang YH
    J Hazard Mater; 2009 Dec; 172(1):46-53. PubMed ID: 19625124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.