These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17687033)

  • 1. The rodent lumbar spinal cord learns to correct errors in hindlimb coordination caused by viscous force perturbations during stepping.
    Heng C; de Leon RD
    J Neurosci; 2007 Aug; 27(32):8558-62. PubMed ID: 17687033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
    Timoszyk WK; De Leon RD; London N; Roy RR; Edgerton VR; Reinkensmeyer DJ
    J Neurophysiol; 2002 Dec; 88(6):3108-17. PubMed ID: 12466434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using robotics to teach the spinal cord to walk.
    de Leon RD; Kubasak MD; Phelps PE; Timoszyk WK; Reinkensmeyer DJ; Roy RR; Edgerton VR
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):267-73. PubMed ID: 12589925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
    Hayes HB; Chang YH; Hochman S
    J Neurophysiol; 2009 Feb; 101(2):1114-22. PubMed ID: 19073815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon J; Schmitt R
    J Biomech Eng; 2011 Dec; 133(12):121007. PubMed ID: 22206424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats.
    de Leon RD; Acosta CN
    J Neurotrauma; 2006 Jul; 23(7):1147-63. PubMed ID: 16866627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
    See PA; de Leon RD
    J Neurophysiol; 2013 Aug; 110(3):760-7. PubMed ID: 23678012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord.
    de Leon RD; Reinkensmeyer DJ; Timoszyk WK; London NJ; Roy RR; Edgerton VR
    Prog Brain Res; 2002; 137():141-9. PubMed ID: 12440365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training.
    De Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jan; 81(1):85-94. PubMed ID: 9914269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.
    Hamlin M; Traughber T; Reinkensmeyer DJ; de Leon RD
    J Neurosci Methods; 2015 May; 246():134-41. PubMed ID: 25794460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular glutamate in the dorsal horn of the lumbar spinal cord in the freely moving rat during hindlimb stepping.
    Walwyn WM; Ta-Haung J; Ackerson L; Maidment NT; Edgerton VR
    Pharmacol Biochem Behav; 1999 Aug; 63(4):581-8. PubMed ID: 10462186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds.
    Dambreville C; Labarre A; Thibaudier Y; Hurteau MF; Frigon A
    J Neurophysiol; 2015 Aug; 114(2):1119-28. PubMed ID: 26084910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat.
    de Leon RD; Tamaki H; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jul; 82(1):359-69. PubMed ID: 10400964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscous field training induces after effects but hinders recovery of overground locomotion following spinal cord injury in rats.
    Neckel ND; Dai H
    Behav Brain Res; 2021 Aug; 412():113415. PubMed ID: 34153426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats.
    Norton JA; Mushahwar VK
    Ann N Y Acad Sci; 2010 Jun; 1198():10-20. PubMed ID: 20536916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.
    Nessler JA; De Leon RD; Sharp K; Kwak E; Minakata K; Reinkensmeyer DJ
    J Neurotrauma; 2006 Jun; 23(6):882-96. PubMed ID: 16774473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.