These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 17687185)

  • 1. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter.
    Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H
    Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet.
    Segawa H; Yamanaka S; Ito M; Kuwahata M; Shono M; Yamamoto T; Miyamoto K
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F587-96. PubMed ID: 15561978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of Na/Pi-II transporters in phosphate metabolism.
    Segawa H; Aranami F; Kaneko I; Tomoe Y; Miyamoto K
    Bone; 2009 Jul; 45 Suppl 1():S2-7. PubMed ID: 19232403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium stimulates renal phosphate reabsorption.
    Thumfart J; Jung S; Amasheh S; Krämer S; Peters H; Sommer K; Biber J; Murer H; Meij I; Querfeld U; Wagner CA; Müller D
    Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1126-33. PubMed ID: 18701629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular/molecular control of renal Na/Pi-cotransport.
    Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J
    Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.
    Tenenhouse HS; Sabbagh Y
    Pflugers Arch; 2002 Jun; 444(3):317-26. PubMed ID: 12111239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [New aspect of renal phosphate reabsorption and phosphate metabolism].
    Miyamoto K; Tatsumi S; Ito M; Segawa H
    Clin Calcium; 2007 Oct; 17(10):1485-92. PubMed ID: 17906398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
    Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the renal type IIa Na/Pi cotransporter by cGMP.
    Bacic D; Hernando N; Traebert M; Lederer E; Völkl H; Biber J; Kaissling B; Murer H
    Pflugers Arch; 2001 Nov; 443(2):306-13. PubMed ID: 11713658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of phosphate balance in the kidney].
    Inishi Y; Hase H
    Clin Calcium; 2005 Jul; 15(7):115-8. PubMed ID: 15995306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias?
    Amatschek S; Haller M; Oberbauer R
    Eur J Clin Invest; 2010 Jun; 40(6):552-60. PubMed ID: 20412291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transport: molecular basis, regulation and pathophysiology.
    Tenenhouse HS
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):572-7. PubMed ID: 17270430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel aspects in regulated expression of the renal type IIa Na/Pi-cotransporter.
    Bacic D; Wagner CA; Hernando N; Kaissling B; Biber J; Murer H
    Kidney Int Suppl; 2004 Oct; (91):S5-S12. PubMed ID: 15461703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H; Köhler K; Lambert G; Stange G; Biber J; Forster I
    Cell Biochem Biophys; 2002; 36(2-3):215-20. PubMed ID: 12139407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter.
    Segawa H; Kawakami E; Kaneko I; Kuwahata M; Ito M; Kusano K; Saito H; Fukushima N; Miyamoto K
    Pflugers Arch; 2003 Aug; 446(5):585-92. PubMed ID: 12851820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of renal apical Na/phosphate cotransport.
    Murer H; Biber J
    Annu Rev Physiol; 1996; 58():607-18. PubMed ID: 8815811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological regulation of renal sodium-dependent phosphate cotransporters.
    Miyamoto K; Segawa H; Ito M; Kuwahata M
    Jpn J Physiol; 2004 Apr; 54(2):93-102. PubMed ID: 15182416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells.
    Ito M; Sakurai A; Hayashi K; Ohi A; Kangawa N; Nishiyama T; Sugino S; Uehata Y; Kamahara A; Sakata M; Tatsumi S; Kuwahata M; Taketani Y; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F243-54. PubMed ID: 20410212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.