These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17687398)

  • 1. Possible involvement of integrin signaling pathway in the process of recovery from restraint stress in rats.
    Gao YZ; Guo SY; Yin QZ; Cui XQ; Hisamitsu T; Jiang XH
    Neurosci Bull; 2007 Jul; 23(4):229-35. PubMed ID: 17687398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of restraint stress on alpha(1) adrenoceptor mRNA expression in the hypothalamus and midbrain of the rat.
    Miyahara S; Komori T; Fujiwara R; Shizuya K; Yamamoto M; Ohmori M; Okazaki Y
    Brain Res; 1999 Oct; 843(1-2):130-5. PubMed ID: 10528119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress induces the expression of heterotrimeric G protein beta subunits and the phosphorylation of PKB/Akt and ERK1/2 in rat brain.
    Lee SY; Kang JS; Song GY; Myung CS
    Neurosci Res; 2006 Oct; 56(2):180-92. PubMed ID: 16949170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of food intake induced by acute stress in rats is due to satiation effects.
    Calvez J; Fromentin G; Nadkarni N; Darcel N; Even P; Tomé D; Ballet N; Chaumontet C
    Physiol Behav; 2011 Oct; 104(5):675-83. PubMed ID: 21787797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats.
    Gray M; Bingham B; Viau V
    J Neuroendocrinol; 2010 Feb; 22(2):92-101. PubMed ID: 20002965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic stress adaptation of the nitric oxide synthases and IL-1β levels in brain structures and hypothalamic-pituitary-adrenal axis activity induced by homotypic stress.
    Gadek-Michalska A; Tadeusz J; Rachwalska P; Bugajski J
    J Physiol Pharmacol; 2015 Jun; 66(3):427-40. PubMed ID: 26084225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal isolation changes the expression of IGF-IR and IGFBP-2 in the hippocampus in response to adulthood restraint stress.
    Erabi K; Morinobu S; Kawano K; Tsuji S; Yamawaki S
    Int J Neuropsychopharmacol; 2007 Jun; 10(3):369-81. PubMed ID: 16848927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling analysis reveals region-distinctive changes of gene expression in the CNS in response to different moderate restraint stress.
    Wang K; Xiang XH; He F; Lin LB; Zhang R; Ping XJ; Han JS; Guo N; Zhang QH; Cui CL; Zhao GP
    J Neurochem; 2010 Jun; 113(6):1436-46. PubMed ID: 20218974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of pituitary corticotropin-releasing hormone-binding protein messenger ribonucleic acid levels by restraint stress and adrenalectomy.
    McClennen SJ; Cortright DN; Seasholtz AF
    Endocrinology; 1998 Nov; 139(11):4435-41. PubMed ID: 9794449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific and time-dependent effects of glucocorticoid receptor agonist RU28362 on stress-induced pro-opiomelanocortin hnRNA, c-fos mRNA and zif268 mRNA in the pituitary.
    Ginsberg AB; Frank MG; Francis AB; Rubin BA; O'Connor KA; Spencer RL
    J Neuroendocrinol; 2006 Feb; 18(2):129-38. PubMed ID: 16420282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclooxygenase-2-related signaling in the hypothalamus plays differential roles in response to various acute stresses.
    Ma Y; Matsuwaki T; Yamanouchi K; Nishihara M
    Brain Res; 2013 May; 1508():23-33. PubMed ID: 23458502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats.
    Zelena D; Földes A; Mergl Z; Barna I; Kovács KJ; Makara GB
    Brain Res Bull; 2004 Jul; 63(6):521-30. PubMed ID: 15249118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus.
    Lund TD; Munson DJ; Haldy ME; Handa RJ
    J Neuroendocrinol; 2004 Mar; 16(3):272-8. PubMed ID: 15049858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters.
    Kim KS; Han PL
    J Neurosci Res; 2006 Feb; 83(3):497-507. PubMed ID: 16416425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced inhibition of the plasma corticosterone response to a subsequent stress in rats: a nonadrenocorticotropin-mediated mechanism.
    De Souza EB; Van Loon GR
    Endocrinology; 1982 Jan; 110(1):23-33. PubMed ID: 6274619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling in hypothalamus of immobilization-stressed mouse using cDNA microarray.
    Lee HC; Chang DE; Yeom M; Kim GH; Choi KD; Shim I; Lee HJ; Hahm DH
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):293-300. PubMed ID: 15857693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrogen modifies stress response of catecholamine biosynthetic enzyme genes and cardiovascular system in ovariectomized female rats.
    Serova LI; Maharjan S; Sabban EL
    Neuroscience; 2005; 132(2):249-59. PubMed ID: 15802180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of TGF-{beta} receptor- and integrin-mediated signaling pathways in the pathogenesis of granular corneal dystrophy II.
    Choi SI; Yoo YM; Kim BY; Kim TI; Cho HJ; Ahn SY; Lee HK; Cho HS; Kim EK
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):1832-47. PubMed ID: 19933198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor.
    Uchida S; Nishida A; Hara K; Kamemoto T; Suetsugi M; Fujimoto M; Watanuki T; Wakabayashi Y; Otsuki K; McEwen BS; Watanabe Y
    Eur J Neurosci; 2008 May; 27(9):2250-61. PubMed ID: 18445216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of recovery from immobilization stress on striatal preprodynorphin- and kappa opioid receptor-mRNA levels of the male rat.
    Lucas LR; Dragisic T; Duwaerts CC; Swiatkowski M; Suzuki H
    Physiol Behav; 2011 Oct; 104(5):972-80. PubMed ID: 21723305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.