BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 176875)

  • 1. Rubrospinal effects on ventral spinocerebellar tract neurones.
    Baldissera F; ten Bruggencate G
    Acta Physiol Scand; 1976 Feb; 96(2):233-49. PubMed ID: 176875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects from the vestibulospinal tract on transmission from primary afferents to ventral spino-cerebellar tract neurones.
    Baldissera F; Roberts WJ
    Acta Physiol Scand; 1976 Feb; 96(2):217-32. PubMed ID: 176874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. III. Effects from supraspinal pathways.
    Hultborn H; Illert M; Santini M
    Acta Physiol Scand; 1976 Mar; 96(3):368-91. PubMed ID: 179277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on the ventral spinocerebellar tract neurones from Deiters' nucleus and the medial longitudinal fascicle in the cat.
    Baldissera F; Roberts WJ
    Acta Physiol Scand; 1975 Feb; 93(2):228-49. PubMed ID: 167549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration in descending motor pathways controlling the forelimb in the cat. 2. Convergence on neurones mediating disynaptic cortico-motoneuronal excitation.
    Illert M; Lundberg A; Tanaka R
    Exp Brain Res; 1976 Dec; 26(5):521-40. PubMed ID: 188674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflex pathways from group II muscle afferents. 2. Functional characteristics of reflex pathways to alpha-motoneurones.
    Lundberg A; Malmgren K; Schomburg ED
    Exp Brain Res; 1987; 65(2):282-93. PubMed ID: 3030794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration in descending motor pathways controlling the forelimb in the cat. 11. Inhibitory pathways from higher motor centres and forelimb afferents to C3-C4 propriospinal neurones.
    Alstermark B; Lundberg A; Sasaki S
    Exp Brain Res; 1984; 56(2):293-307. PubMed ID: 6479263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of spinal collateral actions of feline ventral spinocerebellar tract neurons.
    Geborek P; Nilsson E; Bolzoni F; Jankowska E
    Eur J Neurosci; 2013 Feb; 37(3):380-92. PubMed ID: 23167927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of forelimb afferent actions on C7-Th1 propriospinal neurones bilaterally projecting to sacral segments of the cat spinal cord.
    Krutki P; Mrówczyński W
    Arch Ital Biol; 2004 Feb; 142(1):47-58. PubMed ID: 15143623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration in descending motor pathways controlling the forelimb in the cat. 12. Interneurones which may mediate descending feed-forward inhibition and feed-back inhibition from the forelimb to C3-C4 propriospinal neurones.
    Alstermark B; Lundberg A; Sasaki S
    Exp Brain Res; 1984; 56(2):308-22. PubMed ID: 6479264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory input to cells of origin of uncrossed spinocerebellar tract located below Clarke's column in the cat.
    Aoyama M; Hongo T; Kudo N
    J Physiol; 1988 Apr; 398():233-57. PubMed ID: 3392672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. II. Effects from segmental flexor reflex pathways.
    Hultborn H; Illert M; Santini M
    Acta Physiol Scand; 1976 Mar; 96(3):351-67. PubMed ID: 1274617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat.
    Edgley SA; Jankowska E; Shefchyk S
    J Physiol; 1988 Sep; 403():57-71. PubMed ID: 3150984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3-C4 propriospinal neurones.
    Alstermark B; Lundberg A; Sasaki S
    Exp Brain Res; 1984; 56(2):279-92. PubMed ID: 6090195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord.
    Jankowska E; Riddell JS
    J Physiol; 1994 Mar; 475(3):455-68. PubMed ID: 8006828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do spinocerebellar neurones forward information on spinal actions of neurones in the feline red nucleus?
    Jankowska E; Nilsson E; Hammar I
    J Physiol; 2011 Dec; 589(Pt 23):5727-39. PubMed ID: 21986203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitation from contralateral primary afferents of interneuronal transmission in the Ia inhibitory pathway to motoneurones.
    Fedina L; Hultborn H; Illert M
    Acta Physiol Scand; 1975 Jun; 94(2):198-221. PubMed ID: 1155177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. I. Disynaptic Ia inhibition of Ia inhibitory interneurones.
    Hultborn H; Illert M; Santini M
    Acta Physiol Scand; 1976 Feb; 96(2):193-201. PubMed ID: 1258669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common interneurones in reflex pathways from group 1a and 1b afferents of ankle extensors in the cat.
    Jankowska E; Johannisson T; Lipski J
    J Physiol; 1981 Jan; 310():381-402. PubMed ID: 7230041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of volleys in cortico-spinal tract fibres on ventral spino-cerebellar tract cells in the cat.
    Fu TC; Jankowska E; Tanaka R
    Acta Physiol Scand; 1977 May; 100(1):1-13. PubMed ID: 197794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.