These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 17687584)
1. Enantioselective Chronic Toxicity of Fipronil to Ceriodaphnia dubia. Wilson WA; Konwick BJ; Garrison AW; Avants JK; Black MC Arch Environ Contam Toxicol; 2008 Jan; 54(1):36-43. PubMed ID: 17687584 [TBL] [Abstract][Full Text] [Related]
2. Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to Ceriodaphnia dubia. Konwick BJ; Fisk AT; Garrison AW; Avants JK; Black MC Environ Toxicol Chem; 2005 Sep; 24(9):2350-5. PubMed ID: 16193765 [TBL] [Abstract][Full Text] [Related]
3. Acute and chronic toxicity of 2,4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Silva LCM; Moreira RA; Pinto TJS; Ogura AP; Yoshii MPC; Lopes LFP; Montagner CC; Goulart BV; Daam MA; EspĂndola ELG Ecotoxicology; 2020 Nov; 29(9):1462-1475. PubMed ID: 32860623 [TBL] [Abstract][Full Text] [Related]
4. Toxicities of fipronil enantiomers to the honeybee Apis mellifera L. and enantiomeric compositions of fipronil in honey plant flowers. Li X; Bao C; Yang D; Zheng M; Li X; Tao S Environ Toxicol Chem; 2010 Jan; 29(1):127-32. PubMed ID: 20821427 [TBL] [Abstract][Full Text] [Related]
5. Elevated concentrations of ethinylestradiol, 17beta-estradiol, and medroxyprogesterone have little effect on reproduction and survival of Ceriodaphnia dubia. Jukosky JA; Watzin MC; Leiter JC Bull Environ Contam Toxicol; 2008 Sep; 81(3):230-5. PubMed ID: 18636214 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Key P; Chung K; Siewicki T; Fulton M Ecotoxicol Environ Saf; 2007 Oct; 68(2):272-7. PubMed ID: 17204326 [TBL] [Abstract][Full Text] [Related]
7. Comparative aquatic toxicity evaluation of 2-(thiocyanomethylthio)benzothiazole and selected degradation products using Ceriodaphnia dubia. Nawrocki ST; Drake KD; Watson CF; Foster GD; Maier KJ Arch Environ Contam Toxicol; 2005 Apr; 48(3):344-50. PubMed ID: 15750776 [TBL] [Abstract][Full Text] [Related]
8. Role of piperonyl butoxide in the toxicity of chlorpyrifos to Ceriodaphnia dubia and Xenopus laevis. El-Merhibi A; Kumar A; Smeaton T Ecotoxicol Environ Saf; 2004 Feb; 57(2):202-12. PubMed ID: 14759667 [TBL] [Abstract][Full Text] [Related]
9. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos. Wang YS; Tai KT; Yen JH Ecotoxicol Environ Saf; 2004 Mar; 57(3):346-53. PubMed ID: 15041257 [TBL] [Abstract][Full Text] [Related]
10. Acute and chronic copper toxicity to a saltwater cladoceran Moina monogolica Daday. Wang Z; Kong H; Wu D Arch Environ Contam Toxicol; 2007 Jul; 53(1):50-6. PubMed ID: 17486285 [TBL] [Abstract][Full Text] [Related]
11. Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Stoughton SJ; Liber K; Culp J; Cessna A Arch Environ Contam Toxicol; 2008 May; 54(4):662-73. PubMed ID: 18214581 [TBL] [Abstract][Full Text] [Related]
12. Comparative toxicity of chlorothalonil and chlorpyrifos: Ceriodaphnia dubia and Pimephales promelas. Sherrard RM; Murray-Gulde CL; Rodgers JH; Shah YT Environ Toxicol; 2002 Dec; 17(6):503-12. PubMed ID: 12448017 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of offspring to chronic 3,4-dichloroaniline exposure varies with maternal exposure. Rose RM; Warne MS; Lim RP Ecotoxicol Environ Saf; 2004 Jul; 58(3):405-12. PubMed ID: 15223266 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia. Overturf CL; Wormington AM; Blythe KN; Gohad NV; Mount AS; Roberts AP Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():49-54. PubMed ID: 25819741 [TBL] [Abstract][Full Text] [Related]
15. Chronic toxicity of glutaraldehyde: differential sensitivity of three freshwater organisms. Sano LL; Krueger AM; Landrum PF Aquat Toxicol; 2005 Feb; 71(3):283-96. PubMed ID: 15670634 [TBL] [Abstract][Full Text] [Related]
16. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Dave G; Nilsson E Aquat Toxicol; 2005 Jun; 73(1):11-30. PubMed ID: 15892989 [TBL] [Abstract][Full Text] [Related]
17. Toxicity and hazard assessment of fipronil to Daphnia pulex. Stark JD; Vargas RI Ecotoxicol Environ Saf; 2005 Sep; 62(1):11-6. PubMed ID: 15978286 [TBL] [Abstract][Full Text] [Related]
18. Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure. Qin F; Gao Y; Xu P; Guo B; Li J; Wang H Pest Manag Sci; 2015 Apr; 71(4):553-61. PubMed ID: 24899256 [TBL] [Abstract][Full Text] [Related]
19. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors. Naddy RB; Gorsuch JW; Rehner AB; McNerney GR; Bell RA; Kramer JR Aquat Toxicol; 2007 Aug; 84(1):1-10. PubMed ID: 17658626 [TBL] [Abstract][Full Text] [Related]
20. Assessing caffeine as an emerging environmental concern using conventional approaches. Moore MT; Greenway SL; Farris JL; Guerra B Arch Environ Contam Toxicol; 2008 Jan; 54(1):31-5. PubMed ID: 17957400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]