BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17687697)

  • 1. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants.
    Halford NG; Muttucumaru N; Curtis TY; Parry MA
    Food Addit Contam; 2007; 24 Suppl 1():26-36. PubMed ID: 17687697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing acrylamide precursors in raw materials derived from wheat and potato.
    Muttucumaru N; Elmore JS; Curtis T; Mottram DS; Parry MA; Halford NG
    J Agric Food Chem; 2008 Aug; 56(15):6167-72. PubMed ID: 18624429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variation and possible SNP markers for breeding wheat with low-grain asparagine, the major precursor for acrylamide formation in heat-processed products.
    Emebiri LC
    J Sci Food Agric; 2014 May; 94(7):1422-9. PubMed ID: 24122675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylamide in fried and roasted potato products: a review on progress in mitigation.
    Foot RJ; Haase NU; Grob K; Gondé P
    Food Addit Contam; 2007; 24 Suppl 1():37-46. PubMed ID: 17687698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide in cereal and cereal products: a review on progress in level reduction.
    Konings EJ; Ashby P; Hamlet CG; Thompson GA
    Food Addit Contam; 2007; 24 Suppl 1():47-59. PubMed ID: 17687699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of genotype and environment on free amino acid levels in wheat grain: implications for acrylamide formation during processing.
    Curtis TY; Muttucumaru N; Shewry PR; Parry MA; Powers SJ; Elmore JS; Mottram DS; Hook S; Halford NG
    J Agric Food Chem; 2009 Feb; 57(3):1013-21. PubMed ID: 19143525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylamide in home-prepared roasted potatoes.
    Skog K; Viklund G; Olsson K; Sjöholm I
    Mol Nutr Food Res; 2008 Mar; 52(3):307-12. PubMed ID: 18320571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.
    Zhu X; Gong H; He Q; Zeng Z; Busse JS; Jin W; Bethke PC; Jiang J
    Plant Biotechnol J; 2016 Feb; 14(2):709-18. PubMed ID: 26079224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide in food: Progress in and prospects for genetic and agronomic solutions.
    Raffan S; Halford NG
    Ann Appl Biol; 2019 Nov; 175(3):259-281. PubMed ID: 31866690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free amino acids and sugars in rye grain: implications for acrylamide formation.
    Curtis TY; Powers SJ; Balagiannis D; Elmore JS; Mottram DS; Parry MA; Rakszegi M; Bedö Z; Shewry PR; Halford NG
    J Agric Food Chem; 2010 Feb; 58(3):1959-69. PubMed ID: 20055414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acrylamide problem: a plant and agronomic science issue.
    Halford NG; Curtis TY; Muttucumaru N; Postles J; Elmore JS; Mottram DS
    J Exp Bot; 2012 May; 63(8):2841-51. PubMed ID: 22345642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products.
    Silva EM; Simon PW
    Adv Exp Med Biol; 2005; 561():371-86. PubMed ID: 16438312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction in Dietary Acrylamide Exposure-Impact of Potatoes with Low Acrylamide Potential.
    Tran NL; Barraj LM; Collinge S
    Risk Anal; 2017 Sep; 37(9):1754-1767. PubMed ID: 27866376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions.
    Žilić S; Aktağ IG; Dodig D; Filipović M; Gökmen V
    Food Res Int; 2020 Jun; 132():109109. PubMed ID: 32331630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds.
    Oliver SL; Yobi A; Flint-Garcia S; Angelovici R
    J Agric Food Chem; 2024 Mar; 72(12):6089-6095. PubMed ID: 38483189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of acrylamide in selected foods and mitigation options.
    Amrein TM; Andres L; Escher F; Amadò R
    Food Addit Contam; 2007; 24 Suppl 1():13-25. PubMed ID: 17687696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods.
    Žilić S; Dodig D; Basić Z; Vančetović J; Titan P; Đurić N; Tolimir N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 May; 34(5):705-713. PubMed ID: 28150529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation.
    Muttucumaru N; Powers SJ; Elmore JS; Dodson A; Briddon A; Mottram DS; Halford NG
    Food Chem; 2017 Apr; 220():76-86. PubMed ID: 27855938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety.
    Raffan S; Oddy J; Halford NG
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing Dietary Acrylamide Exposure from Wheat Products through Crop Management and Imaging.
    Oddy J; Addy J; Mead A; Hall C; Mackay C; Ashfield T; McDiarmid F; Curtis TY; Raffan S; Wilkinson M; Elmore JS; Cryer N; de Almeida IM; Halford NG
    J Agric Food Chem; 2023 Feb; 71(7):3403-13. PubMed ID: 36745538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.