BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17688060)

  • 1. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The load-sharing classification of thoracolumbar fractures: an in vitro biomechanical validation.
    Wang XY; Dai LY; Xu HZ; Chi YL
    Spine (Phila Pa 1976); 2007 May; 32(11):1214-9. PubMed ID: 17495778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility.
    Panjabi MM; Oxland TR; Lin RM; McGowen TW
    Spine (Phila Pa 1976); 1994 Mar; 19(5):578-85. PubMed ID: 8184353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single and incremental trauma models: a biomechanical assessment of spinal instability.
    Atlas OK; Dodds SD; Panjabi MM
    Eur Spine J; 2003 Apr; 12(2):205-10. PubMed ID: 12709859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superiority of incremental trauma approach in experimental burst fracture studies.
    Panjabi MM; Hoffman H; Kato Y; Cholewicki J
    Clin Biomech (Bristol, Avon); 2000 Feb; 15(2):73-8. PubMed ID: 10627321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture pattern and instability of thoracolumbar injuries.
    Kifune M; Panjabi MM; Arand M; Liu W
    Eur Spine J; 1995; 4(2):98-103. PubMed ID: 7600158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graded thoracolumbar spinal injuries: development of multidirectional instability.
    Panjabi MM; Kifune M; Liu W; Arand M; Vasavada A; Oxland TR
    Eur Spine J; 1998; 7(4):332-9. PubMed ID: 9765043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
    Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ
    Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant roentgenographic parameters for evaluating the flexibility of acute thoracolumbar burst fractures. An in vitro study.
    Lin RM; Panjabi MM; Oxland TR
    Int Orthop; 1997; 21(2):109-14. PubMed ID: 9195265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of three fixation techniques for unstable thoracolumbar burst fractures. Laboratory investigation.
    Acosta FL; Buckley JM; Xu Z; Lotz JC; Ames CP
    J Neurosurg Spine; 2008 Apr; 8(4):341-6. PubMed ID: 18377319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of 2-column thoracolumbar fractures with orthoses: a cadaver model.
    Rubery PT; Brown R; Prasarn M; Small J; Conrad B; Horodyski M; Rechtine G
    Spine (Phila Pa 1976); 2013 Mar; 38(5):E270-5. PubMed ID: 23211532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incremental and single trauma produce equivalent subfailure soft tissue injury of the cervical spine.
    Ghole SA; Ivancic PC; Tominaga Y; Gimenez SE; Panjabi MM
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):784-9. PubMed ID: 15342150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation.
    Panjabi MM; Oxland TR; Kifune M; Arand M; Wen L; Chen A
    Spine (Phila Pa 1976); 1995 May; 20(10):1122-7. PubMed ID: 7638654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traumatic instabilities of the cervical spine caused by high-speed axial compression in a human model. An in vitro biomechanical study.
    Zhu Q; Ouyang J; Lu W; Lu H; Li Z; Guo X; Zhong S
    Spine (Phila Pa 1976); 1999 Mar; 24(5):440-4. PubMed ID: 10084180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formative mechanism of intracanal fracture fragments in thoracolumbar burst fractures: a finite element study.
    Zeng ZL; Zhu R; Li SZ; Yu Y; Wang JJ; Jia YW; Chen B; Cheng LM
    Chin Med J (Engl); 2013; 126(15):2852-8. PubMed ID: 23924455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of different postures under vertical impact load on thoracolumbar burst fracture.
    Li WJ; Guo LX
    Med Biol Eng Comput; 2020 Nov; 58(11):2725-2736. PubMed ID: 32880092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Thoracolumbar burst fractures; an experimental study on cadaveric spines and finite element method].
    Shirado O
    Nihon Seikeigeka Gakkai Zasshi; 1993 Jul; 67(7):644-54. PubMed ID: 8409634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
    Ivancic PC
    Accid Anal Prev; 2013 Oct; 59():185-91. PubMed ID: 23792617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.