These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 17688263)
1. Composites of poly(DL-lactide-co-glycolide) and calcium carbonate: in vitro evaluation for use in orthopedic applications. Cotton NJ; Egan MJ; Brunelle JE J Biomed Mater Res A; 2008 Apr; 85(1):195-205. PubMed ID: 17688263 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
3. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
4. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour. Unger F; Wittmar M; Morell F; Kissel T Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641 [TBL] [Abstract][Full Text] [Related]
6. [Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)]. Wei Z; Liu L; Zhang M; Yang F; Qi M Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):122-6. PubMed ID: 18435272 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Wen X; Tresco PA Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567 [TBL] [Abstract][Full Text] [Related]
8. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. Karp JM; Shoichet MS; Davies JE J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827 [TBL] [Abstract][Full Text] [Related]
9. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447 [TBL] [Abstract][Full Text] [Related]
10. [Mechanical properties and biocompatibility of nanometer calcium carbonate/poly (L-lactide) composites]. Liu J; Xu Z; Li D; Xu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):805-8. PubMed ID: 17002112 [TBL] [Abstract][Full Text] [Related]
11. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726 [TBL] [Abstract][Full Text] [Related]
12. Tailored degradation of biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium silicate/poly(lactide-co-glycolide) ternary composites: an in vitro study. Idaszek J; Zinn M; Obarzanek-Fojt M; Zell V; Swieszkowski W; Bruinink A Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4352-60. PubMed ID: 23910353 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. Day RM; Maquet V; Boccaccini AR; Jérôme R; Forbes A J Biomed Mater Res A; 2005 Dec; 75(4):778-87. PubMed ID: 16082717 [TBL] [Abstract][Full Text] [Related]
14. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
15. Influence of formulation variables on the morphology of biodegradable microparticles prepared by spray drying. Clarke N; O'Connor K; Ramtoola Z Drug Dev Ind Pharm; 1998 Feb; 24(2):169-74. PubMed ID: 15605447 [TBL] [Abstract][Full Text] [Related]
16. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Zhou H; Lawrence JG; Bhaduri SB Acta Biomater; 2012 Jul; 8(6):1999-2016. PubMed ID: 22342596 [TBL] [Abstract][Full Text] [Related]
17. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. Ruhé PQ; Boerman OC; Russel FG; Spauwen PH; Mikos AG; Jansen JA J Control Release; 2005 Aug; 106(1-2):162-71. PubMed ID: 15972241 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
19. Macrophage-mediated biodegradation of poly(DL-lactide-co-glycolide) in vitro. Xia Z; Huang Y; Adamopoulos IE; Walpole A; Triffitt JT; Cui Z J Biomed Mater Res A; 2006 Dec; 79(3):582-90. PubMed ID: 16817218 [TBL] [Abstract][Full Text] [Related]
20. Towards developing surface eroding poly(alpha-hydroxy acids). Xu XJ; Sy JC; Prasad Shastri V Biomaterials; 2006 May; 27(15):3021-30. PubMed ID: 16455136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]