BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 17688266)

  • 1. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids.
    Rettig R; Virtanen S
    J Biomed Mater Res A; 2008 Apr; 85(1):167-75. PubMed ID: 17688266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids.
    Rettig R; Virtanen S
    J Biomed Mater Res A; 2009 Feb; 88(2):359-69. PubMed ID: 18286623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications.
    Mueller WD; Lucia Nascimento M; Lorenzo de Mele MF
    Acta Biomater; 2010 May; 6(5):1749-55. PubMed ID: 20051271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.
    Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ
    Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media.
    Mueller WD; de Mele MF; Nascimento ML; Zeddies M
    J Biomed Mater Res A; 2009 Aug; 90(2):487-95. PubMed ID: 18563809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids.
    Alvarez-Lopez M; Pereda MD; del Valle JA; Fernandez-Lorenzo M; Garcia-Alonso MC; Ruano OA; Escudero ML
    Acta Biomater; 2010 May; 6(5):1763-71. PubMed ID: 19446048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.
    Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F
    Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behaviour of Ti-15Mo alloy for dental implant applications.
    Kumar S; Narayanan TS
    J Dent; 2008 Jul; 36(7):500-7. PubMed ID: 18468762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo corrosion measurements of magnesium alloys.
    Witte F; Fischer J; Nellesen J; Crostack HA; Kaese V; Pisch A; Beckmann F; Windhagen H
    Biomaterials; 2006 Mar; 27(7):1013-8. PubMed ID: 16122786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.
    Xin Y; Huo K; Tao H; Tang G; Chu PK
    Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.
    Xin Y; Jiang J; Huo K; Tang G; Tian X; Chu PK
    J Biomed Mater Res A; 2009 Jun; 89(3):717-26. PubMed ID: 18449935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques.
    Bobby Kannan M; Singh RK
    J Biomed Mater Res A; 2010 Jun; 93(3):1050-5. PubMed ID: 19753621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application.
    Xu L; Zhang E; Yin D; Zeng S; Yang K
    J Mater Sci Mater Med; 2008 Mar; 19(3):1017-25. PubMed ID: 17665099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process.
    Wang HX; Guan SK; Wang X; Ren CX; Wang LG
    Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution.
    Metikos-Huković M; Pilić Z; Babić R; Omanović D
    Acta Biomater; 2006 Nov; 2(6):693-700. PubMed ID: 16884967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on an Mg-Zn alloy as a degradable biomaterial.
    Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y
    Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.