These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 17688291)
1. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
3. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics. Ni S; Chang J; Chou L J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509 [TBL] [Abstract][Full Text] [Related]
4. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
6. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235 [TBL] [Abstract][Full Text] [Related]
7. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Kao CT; Huang TH; Chen YJ; Hung CJ; Lin CC; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():126-34. PubMed ID: 25175197 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873 [TBL] [Abstract][Full Text] [Related]
9. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro. Huang MH; Kao CT; Chen YW; Hsu TT; Shieh DE; Huang TH; Shie MY J Mater Sci Mater Med; 2015 Apr; 26(4):161. PubMed ID: 25786397 [TBL] [Abstract][Full Text] [Related]
10. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Chouzouri G; Xanthos M Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite. Homaeigohar SSh; Shokrgozar MA; Sadi AY; Khavandi A; Javadpour J; Hosseinalipour M J Biomed Mater Res A; 2005 Oct; 75(1):14-22. PubMed ID: 16092112 [TBL] [Abstract][Full Text] [Related]
12. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. Ni S; Chang J; Chou L J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636 [TBL] [Abstract][Full Text] [Related]
13. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
14. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: a novel orthopedic composite. Homaeigohar SS; Shokrgozar MA; Javadpour J; Khavandi A; Sadi AY J Biomed Mater Res A; 2006 Jul; 78(1):129-38. PubMed ID: 16612817 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910 [TBL] [Abstract][Full Text] [Related]
16. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings. Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019 [TBL] [Abstract][Full Text] [Related]
17. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers. Lin K; Chang J; Cheng R Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465 [TBL] [Abstract][Full Text] [Related]
18. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Wu C; Ramaswamy Y; Kwik D; Zreiqat H Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration. Wei J; Heo SJ; Liu C; Kim DH; Kim SE; Hyun YT; Shin JW; Shin JW J Biomed Mater Res A; 2009 Sep; 90(3):702-12. PubMed ID: 18563819 [TBL] [Abstract][Full Text] [Related]
20. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]