These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA. Terpstra IR; Snoek LB; Keurentjes JJ; Peeters AJ; van den Ackerveken G Plant Physiol; 2010 Nov; 154(3):1067-78. PubMed ID: 20833726 [TBL] [Abstract][Full Text] [Related]
3. Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. O'Connor TR; Dyreson C; Wyrick JJ Bioinformatics; 2005 Dec; 21(24):4411-3. PubMed ID: 16223790 [TBL] [Abstract][Full Text] [Related]
4. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population. Shi C; Uzarowska A; Ouzunova M; Landbeck M; Wenzel G; Lübberstedt T BMC Genomics; 2007 Jan; 8():22. PubMed ID: 17233901 [TBL] [Abstract][Full Text] [Related]
5. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Yu CP; Lin JJ; Li WH Sci Rep; 2016 Apr; 6():25164. PubMed ID: 27117388 [TBL] [Abstract][Full Text] [Related]
6. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952 [TBL] [Abstract][Full Text] [Related]
7. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants. Peng FY; Hu Z; Yang RC BMC Genomics; 2016 Aug; 17():573. PubMed ID: 27503086 [TBL] [Abstract][Full Text] [Related]
9. Integrating genomic data to predict transcription factor binding. Holloway DT; Kon M; DeLisi C Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910 [TBL] [Abstract][Full Text] [Related]
10. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference. Keilwagen J; Grau J; Paponov IA; Posch S; Strickert M; Grosse I PLoS Comput Biol; 2011 Feb; 7(2):e1001070. PubMed ID: 21347314 [TBL] [Abstract][Full Text] [Related]
11. A systems biology approach for identifying novel pathway regulators in eQTL mapping. Li S; Lu Q; Cui Y J Biopharm Stat; 2010 Mar; 20(2):373-400. PubMed ID: 20309764 [TBL] [Abstract][Full Text] [Related]
12. AthaMap: from in silico data to real transcription factor binding sites. Bülow L; Steffens NO; Galuschka C; Schindler M; Hehl R In Silico Biol; 2006; 6(3):243-52. PubMed ID: 16922688 [TBL] [Abstract][Full Text] [Related]
13. Ab initio identification of putative human transcription factor binding sites by comparative genomics. Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625 [TBL] [Abstract][Full Text] [Related]
14. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression. Murakami K; Kojima T; Sakaki Y BMC Genomics; 2004 Feb; 5(1):16. PubMed ID: 15053842 [TBL] [Abstract][Full Text] [Related]
15. Boosting AthaMap Database Content with Data from Protein Binding Microarrays. Hehl R; Norval L; Romanov A; Bülow L Plant Cell Physiol; 2016 Jan; 57(1):e4. PubMed ID: 26542109 [TBL] [Abstract][Full Text] [Related]
16. Systems genetics, bioinformatics and eQTL mapping. Li H; Deng H Genetica; 2010 Oct; 138(9-10):915-24. PubMed ID: 20811929 [TBL] [Abstract][Full Text] [Related]