These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Mao Y; Chang S; Yang S; Ouyang Q; Jiang L Nat Nanotechnol; 2007 Jun; 2(6):366-71. PubMed ID: 18654309 [TBL] [Abstract][Full Text] [Related]
4. Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions. Fedosov DA; Em Karniadakis G; Caswell B J Chem Phys; 2008 Apr; 128(14):144903. PubMed ID: 18412478 [TBL] [Abstract][Full Text] [Related]
5. Simulation study on the translocation of polymer chains through nanopores. Chen YC; Wang C; Luo MB J Chem Phys; 2007 Jul; 127(4):044904. PubMed ID: 17672722 [TBL] [Abstract][Full Text] [Related]
6. Diffusion-limited binding to a site on the wall of a membrane channel. Dagdug L; Berezhkovskii AM J Chem Phys; 2006 Dec; 125(24):244705. PubMed ID: 17199366 [TBL] [Abstract][Full Text] [Related]
8. Pore design and engineering for filters and membranes. Holdich R; Kosvintsev S; Cumming I; Zhdanov S Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):161-74. PubMed ID: 18272458 [TBL] [Abstract][Full Text] [Related]
9. Crowding effects in non-equilibrium transport through nano-channels. Zilman A; Bel G J Phys Condens Matter; 2010 Nov; 22(45):454130. PubMed ID: 21339616 [TBL] [Abstract][Full Text] [Related]
10. A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium. Logvinova K; Néel MC Chaos; 2004 Dec; 14(4):982-7. PubMed ID: 15568911 [TBL] [Abstract][Full Text] [Related]
12. Heteropolymer translocation through nanopores. Luo K; Ala-Nissila T; Ying SC; Bhattacharya A J Chem Phys; 2007 Apr; 126(14):145101. PubMed ID: 17444750 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo study of structural ordering of Lennard-Jones fluids confined in nanochannels. Abtahinia H; Ebrahimi F J Chem Phys; 2010 Aug; 133(6):064502. PubMed ID: 20707570 [TBL] [Abstract][Full Text] [Related]
14. Entropic transport of finite size particles. Riefler W; Schmid G; Burada PS; Hänggi P J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation of single-file transport. Aityan SK; Portnov VI Gen Physiol Biophys; 1986 Aug; 5(4):351-64. PubMed ID: 3770456 [TBL] [Abstract][Full Text] [Related]
16. Water adsorption in ion-bearing nanopores. Lakatos G; Patey GN J Chem Phys; 2007 Jan; 126(2):024703. PubMed ID: 17228962 [TBL] [Abstract][Full Text] [Related]
17. Effect of membrane morphology on system capacity during normal flow microfiltration. Zydney AL; Ho CC Biotechnol Bioeng; 2003 Sep; 83(5):537-43. PubMed ID: 12827695 [TBL] [Abstract][Full Text] [Related]
18. Mathematical and experimental analyses of antibody transport in hollow-fiber-based specific antibody filters. Hout MS; Federspiel WJ Biotechnol Prog; 2003; 19(5):1553-61. PubMed ID: 14524719 [TBL] [Abstract][Full Text] [Related]
19. Harnessing janus nanoparticles to create controllable pores in membranes. Alexeev A; Uspal WE; Balazs AC ACS Nano; 2008 Jun; 2(6):1117-22. PubMed ID: 19206328 [TBL] [Abstract][Full Text] [Related]
20. Fluids in porous media. I. A hard sponge model. Zhao SL; Dong W; Liu QH J Chem Phys; 2006 Dec; 125(24):244703. PubMed ID: 17199364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]