These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 17688423)
1. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae. Kamisaka Y; Tomita N; Kimura K; Kainou K; Uemura H Biochem J; 2007 Nov; 408(1):61-8. PubMed ID: 17688423 [TBL] [Abstract][Full Text] [Related]
2. Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Deltasnf2 disruptant produces a significant increase in its enzyme activity. Kamisaka Y; Kimura K; Uemura H; Shibakami M Appl Microbiol Biotechnol; 2010 Sep; 88(1):105-15. PubMed ID: 20567816 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2013 Aug; 97(16):7345-55. PubMed ID: 23613035 [TBL] [Abstract][Full Text] [Related]
4. Increase in stearidonic acid by increasing the supply of histidine to oleaginous Saccharomyces cerevisiae. Kimura K; Kamisaka Y; Uemura H; Yamaoka M J Biosci Bioeng; 2014 Jan; 117(1):53-6. PubMed ID: 23932357 [TBL] [Abstract][Full Text] [Related]
5. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253. Polburee P; Ohashi T; Tsai YY; Sumyai T; Lertwattanasakul N; Limtong S; Fujiyama K Microbiology (Reading); 2018 Jan; 164(1):1-10. PubMed ID: 29182511 [TBL] [Abstract][Full Text] [Related]
7. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
8. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant. Kamisaka Y; Kimura K; Uemura H; Ledesma-Amaro R Appl Microbiol Biotechnol; 2016 Sep; 100(18):8147-57. PubMed ID: 27311564 [TBL] [Abstract][Full Text] [Related]
9. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2015 Jan; 99(1):201-10. PubMed ID: 25267159 [TBL] [Abstract][Full Text] [Related]
10. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. Oelkers P; Cromley D; Padamsee M; Billheimer JT; Sturley SL J Biol Chem; 2002 Mar; 277(11):8877-81. PubMed ID: 11751875 [TBL] [Abstract][Full Text] [Related]
11. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Athenstaedt K Biochim Biophys Acta; 2011 Oct; 1811(10):587-96. PubMed ID: 21782973 [TBL] [Abstract][Full Text] [Related]
12. Improvement of Stearidonic acid production in Oleaginous Saccharomyces cerevisiae. Kimura K; Tomita N; Uemura H; Aki T; Ono K; Kamisaka Y Biosci Biotechnol Biochem; 2009 Jun; 73(6):1447-9. PubMed ID: 19502753 [TBL] [Abstract][Full Text] [Related]
13. The native acyltransferase-coding genes DGA1 and DGA2 affect lipid accumulation in Blastobotrys raffinosifermentans differently when overexpressed. Sanya DRA; Onesime D; Kunze G; Neuveglise C; Crutz-Le Coq AM FEMS Yeast Res; 2020 Dec; 20(8):. PubMed ID: 33206977 [TBL] [Abstract][Full Text] [Related]
14. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Kerkhoven EJ; Kim YM; Wei S; Nicora CD; Fillmore TL; Purvine SO; Webb-Robertson BJ; Smith RD; Baker SE; Metz TO; Nielsen J mBio; 2017 Jun; 8(3):. PubMed ID: 28634240 [TBL] [Abstract][Full Text] [Related]
15. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Leber C; Polson B; Fernandez-Moya R; Da Silva NA Metab Eng; 2015 Mar; 28():54-62. PubMed ID: 25461829 [TBL] [Abstract][Full Text] [Related]
16. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Greer MS; Truksa M; Deng W; Lung SC; Chen G; Weselake RJ Appl Microbiol Biotechnol; 2015 Mar; 99(5):2243-53. PubMed ID: 25520169 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol. Arhar S; Gogg-Fassolter G; Ogrizović M; Pačnik K; Schwaiger K; Žganjar M; Petrovič U; Natter K Microb Cell Fact; 2021 Jul; 20(1):147. PubMed ID: 34315498 [TBL] [Abstract][Full Text] [Related]
18. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. Mavraganis I; Meesapyodsuk D; Vrinten P; Smith M; Qiu X Appl Environ Microbiol; 2010 Feb; 76(4):1135-42. PubMed ID: 20023082 [TBL] [Abstract][Full Text] [Related]
19. Identification and Characterization of Diacylglycerol Acyltransferase from Oleaginous Fungus Mucor circinelloides. Zhang L; Zhang H; Song Y J Agric Food Chem; 2018 Jan; 66(3):674-681. PubMed ID: 29260551 [TBL] [Abstract][Full Text] [Related]