These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17688448)

  • 1. Correlation between the structural stability and aggregation propensity of proteins.
    Idicula-Thomas S; Balaji PV
    In Silico Biol; 2007; 7(2):225-37. PubMed ID: 17688448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the relationship between the primary structure of proteins and their amyloidogenic propensity: clues from inclusion body formation.
    Idicula-Thomas S; Balaji PV
    Protein Eng Des Sel; 2005 Apr; 18(4):175-80. PubMed ID: 15849216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid-like properties of bacterial inclusion bodies.
    Carrió M; González-Montalbán N; Vera A; Villaverde A; Ventura S
    J Mol Biol; 2005 Apr; 347(5):1025-37. PubMed ID: 15784261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences.
    Yoon S; Welsh WJ
    Proteins; 2005 Jul; 60(1):110-7. PubMed ID: 15849755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-level expression of a folding-incompetent protein in Escherichia coli: search for the molecular determinants of protein aggregation in vivo.
    Winkelmann J; Calloni G; Campioni S; Mannini B; Taddei N; Chiti F
    J Mol Biol; 2010 May; 398(4):600-13. PubMed ID: 20346957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli.
    Idicula-Thomas S; Kulkarni AJ; Kulkarni BD; Jayaraman VK; Balaji PV
    Bioinformatics; 2006 Feb; 22(3):278-84. PubMed ID: 16332713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and thermodynamic stability of bacterial intracellular aggregates.
    Espargaró A; Sabaté R; Ventura S
    FEBS Lett; 2008 Oct; 582(25-26):3669-73. PubMed ID: 18840434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure studies on protein aggregates and amyloid fibrils.
    Kim YS; Randolph TW; Seefeldt MB; Carpenter JF
    Methods Enzymol; 2006; 413():237-53. PubMed ID: 17046400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent genetic control of protein solubility and conformational quality in Escherichia coli.
    García-Fruitós E; Martínez-Alonso M; Gonzàlez-Montalbán N; Valli M; Mattanovich D; Villaverde A
    J Mol Biol; 2007 Nov; 374(1):195-205. PubMed ID: 17920630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural integrity of beta-sheet assembly.
    Marshall KE; Serpell LC
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):671-6. PubMed ID: 19614573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis.
    Afzal AJ; Lightfoot DA
    Protein Expr Purif; 2007 Jun; 53(2):346-55. PubMed ID: 17287130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria.
    Castillo V; Espargaró A; Gordo V; Vendrell J; Ventura S
    Proteomics; 2010 Dec; 10(23):4172-85. PubMed ID: 21086517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates.
    de Groot NS; Ventura S
    J Biotechnol; 2006 Aug; 125(1):110-3. PubMed ID: 16621081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures.
    Crisman RL; Randolph TW
    Biotechnol Bioeng; 2009 Feb; 102(2):483-92. PubMed ID: 18781701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology.
    Gatti-Lafranconi P; Natalello A; Ami D; Doglia SM; Lotti M
    FEBS J; 2011 Jul; 278(14):2408-18. PubMed ID: 21569207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solubilization of inclusion bodies.
    Freydell EJ; Ottens M; Eppink M; van Dedem G; van der Wielen L
    Biotechnol J; 2007 Jun; 2(6):678-84. PubMed ID: 17492713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.
    El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J
    FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.
    Vera A; González-Montalbán N; Arís A; Villaverde A
    Biotechnol Bioeng; 2007 Apr; 96(6):1101-6. PubMed ID: 17013944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The competition between protein folding and aggregation: off-lattice minimalist model studies.
    Cellmer T; Bratko D; Prausnitz JM; Blanch H
    Biotechnol Bioeng; 2005 Jan; 89(1):78-87. PubMed ID: 15540197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.