These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17688501)

  • 1. Bayesian hierarchical modeling for time course microarray experiments.
    Chi YY; Ibrahim JG; Bissahoyo A; Threadgill DW
    Biometrics; 2007 Jun; 63(2):496-504. PubMed ID: 17688501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional hierarchical models for identifying genes with different time-course expression profiles.
    Hong F; Li H
    Biometrics; 2006 Jun; 62(2):534-44. PubMed ID: 16918918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Laplace mixture model for identification of differential expression in microarray experiments.
    Bhowmick D; Davison AC; Goldstein DR; Ruffieux Y
    Biostatistics; 2006 Oct; 7(4):630-41. PubMed ID: 16565148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible empirical Bayes models for differential gene expression.
    Lo K; Gottardo R
    Bioinformatics; 2007 Feb; 23(3):328-35. PubMed ID: 17138586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian ranking and selection methods using hierarchical mixture models in microarray studies.
    Noma H; Matsui S; Omori T; Sato T
    Biostatistics; 2010 Apr; 11(2):281-9. PubMed ID: 19946026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster-based network model for time-course gene expression data.
    Inoue LY; Neira M; Nelson C; Gleave M; Etzioni R
    Biostatistics; 2007 Jul; 8(3):507-25. PubMed ID: 16980695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On gene ranking using replicated microarray time course data.
    Tai YC; Speed TP
    Biometrics; 2009 Mar; 65(1):40-51. PubMed ID: 18537947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns.
    Liang Y; Kelemen A
    Biom J; 2009 Feb; 51(1):56-69. PubMed ID: 19197952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian classification and non-Bayesian label estimation via EM algorithm to identify differentially expressed genes: a comparative study.
    Antunes M; Sousa L
    Biom J; 2008 Oct; 50(5):824-36. PubMed ID: 18932140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Bayes models for cDNA microarray gene expression.
    Lönnstedt I; Britton T
    Biostatistics; 2005 Apr; 6(2):279-91. PubMed ID: 15772106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays.
    Demichelis F; Magni P; Piergiorgi P; Rubin MA; Bellazzi R
    BMC Bioinformatics; 2006 Nov; 7():514. PubMed ID: 17125514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian state space models for inferring and predicting temporal gene expression profiles.
    Liang Y; Kelemen A
    Biom J; 2007 Dec; 49(6):801-14. PubMed ID: 17638289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA.
    Nueda MJ; Conesa A; Westerhuis JA; Hoefsloot HC; Smilde AK; Talón M; Ferrer A
    Bioinformatics; 2007 Jul; 23(14):1792-800. PubMed ID: 17519250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling microarray data using a threshold mixture model.
    Kauermann G; Eilers P
    Biometrics; 2004 Jun; 60(2):376-87. PubMed ID: 15180663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian mixture model for partitioning gene expression data.
    Zhou C; Wakefield J
    Biometrics; 2006 Jun; 62(2):515-25. PubMed ID: 16918916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian approach to estimation and testing in time-course microarray experiments.
    Angelini C; De Canditiis D; Mutarelli M; Pensky M
    Stat Appl Genet Mol Biol; 2007; 6():Article24. PubMed ID: 17910530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying drug active pathways from gene networks estimated by gene expression data.
    Tamada Y; Imoto S; Tashiro K; Kuhara S; Miyano S
    Genome Inform; 2005; 16(1):182-91. PubMed ID: 16362921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data.
    Kim S; Imoto S; Miyano S
    Biosystems; 2004 Jul; 75(1-3):57-65. PubMed ID: 15245804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autoregressive-model-based missing value estimation for DNA microarray time series data.
    Choong MK; Charbit M; Yan H
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):131-7. PubMed ID: 19129032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Bayesian networks for inferring cause-effect relations from gene expression profiles of cancer versus normal cells.
    Polanski A; Polanska J; Jarzab M; Wiench M; Jarzab B
    Math Biosci; 2007 Oct; 209(2):528-46. PubMed ID: 17467015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.