These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17688887)

  • 1. Stochastic approach to molecular interactions and computational theory of metabolic and genetic regulations.
    Kimura H; Okano H; Tanaka RJ
    J Theor Biol; 2007 Oct; 248(4):590-607. PubMed ID: 17688887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutral models with generalised speciation.
    Haegeman B; Etienne RS
    Bull Math Biol; 2009 Aug; 71(6):1507-19. PubMed ID: 19280265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.
    Kulasiri D
    Methods Enzymol; 2011; 487():253-78. PubMed ID: 21187228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The probabilistic cell: implementation of a probabilistic inference by the biochemical mechanisms of phototransduction.
    Houillon A; Bessière P; Droulez J
    Acta Biotheor; 2010 Sep; 58(2-3):103-20. PubMed ID: 20665071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy.
    Vahedi G; Faryabi B; Chamberland JF; Datta A; Dougherty ER
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2319-31. PubMed ID: 18838357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laplacian dynamics on general graphs.
    Mirzaev I; Gunawardena J
    Bull Math Biol; 2013 Nov; 75(11):2118-49. PubMed ID: 24018536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-stationary and ratio of expectations distributions: a comparative study.
    Artalejo JR; Lopez-Herrero MJ
    J Theor Biol; 2010 Sep; 266(2):264-74. PubMed ID: 20600140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient analysis of stochastic switches and trajectories with applications to gene regulatory networks.
    Munsky B; Khammash M
    IET Syst Biol; 2008 Sep; 2(5):323-33. PubMed ID: 19045827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for prokaryotic protein synthesis.
    Drew DA
    Bull Math Biol; 2001 Mar; 63(2):329-51. PubMed ID: 11276529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronized dynamics and non-equilibrium steady states in a stochastic yeast cell-cycle network.
    Ge H; Qian H; Qian M
    Math Biosci; 2008 Jan; 211(1):132-52. PubMed ID: 18048065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function.
    Paszek P
    Bull Math Biol; 2007 Jul; 69(5):1567-601. PubMed ID: 17361363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.
    Mitavskiy B; Cannings C
    Evol Comput; 2009; 17(3):343-77. PubMed ID: 19708772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hadamard phylogenetic methods and the n-taxon process.
    Bryant D
    Bull Math Biol; 2009 Feb; 71(2):339-51. PubMed ID: 18846403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Markovian stochastic processes: colored noise.
    Łuczka J
    Chaos; 2005 Jun; 15(2):26107. PubMed ID: 16035909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Faster exact Markovian probability functions for motif occurrences: a DFA-only approach.
    Ribeca P; Raineri E
    Bioinformatics; 2008 Dec; 24(24):2839-48. PubMed ID: 18845582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systems biology approach to the blood-aluminium problem: the application and testing of a computational model.
    Beardmore J; Rugg G; Exley C
    J Inorg Biochem; 2007 Sep; 101(9):1187-91. PubMed ID: 17629565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a biologically-based controlled growth and differentiation model for developmental toxicology.
    Whitaker SY; Tran HT; Portier CJ
    J Math Biol; 2003 Jan; 46(1):1-16. PubMed ID: 12525932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.
    Gustafsson L; Sternad M
    Math Biosci; 2007 Oct; 209(2):361-85. PubMed ID: 17412368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.