BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17688908)

  • 1. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.
    Gao M; Simoneit BR; Gantar M; Jaffé R
    Chemosphere; 2007 Dec; 70(2):224-36. PubMed ID: 17688908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence, distribution and origin of C30 cyclobotryococcenes in a subtropical wetland/estuarine ecosystem.
    Xu Y; Jaffé R
    Chemosphere; 2010 Nov; 81(7):918-24. PubMed ID: 20800870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades.
    He D; Simoneit BRT; Jara B; Jaffé R
    Chemosphere; 2015 Jan; 119():258-266. PubMed ID: 25033241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.
    Lu XQ; Maie N; Hanna JV; Childers DL; Jaffé R
    Water Res; 2003 Jun; 37(11):2599-606. PubMed ID: 12753837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental factors controlling the distributions of Botryococcus braunii (A, B and L) biomarkers in a subtropical freshwater wetland.
    He D; Simoneit BRT; Jaffé R
    Sci Rep; 2018 Jun; 8(1):8626. PubMed ID: 29872136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulolytic, fermentative, and methanogenic guilds in benthic periphyton mats from the Florida Everglades.
    Uz I; Chauhan A; Ogram AV
    FEMS Microbiol Ecol; 2007 Aug; 61(2):337-47. PubMed ID: 17651137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper desorption in flooded agricultural soils and toxicity to the Florida apple snail (Pomacea paludosa): implications in Everglades restoration.
    Hoang TC; Rogevich EC; Rand GM; Gardinali PR; Frakes RA; Bargar TA
    Environ Pollut; 2008 Jul; 154(2):338-47. PubMed ID: 18068282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface water sulfate dynamics in the northern Florida Everglades.
    Wang H; Waldon MG; Meselhe EA; Arceneaux JC; Chen C; Harwell MC
    J Environ Qual; 2009; 38(2):734-41. PubMed ID: 19244495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pesticides in fluvial wetlands catchments under intensive agricultural activities.
    Poissant L; Beauvais C; Lafrance P; Deblois C
    Sci Total Environ; 2008 Oct; 404(1):182-95. PubMed ID: 18621412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Accumulation of fluorine by filiform algae (Chlorophyta) agglomerations in an aqueous ecosystem with increased fluoride content].
    Jezierska-Madziar M; Pińskwar P; Golski J
    Ann Acad Med Stetin; 2006; 52 Suppl 1():41-3. PubMed ID: 17469501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?
    Alewell C; Paul S; Lischeid G; Storck FR
    Sci Total Environ; 2008 Oct; 404(2-3):335-42. PubMed ID: 18054998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the Nile monitor, Varanus niloticus L (Reptilia: Varanidae), as a bioindicator of organochlorine pollution in African wetlands.
    Berny PJ; de Buffrénil V; Hémery G
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):359-66. PubMed ID: 17033862
    [No Abstract]   [Full Text] [Related]  

  • 17. Mercury bio-concentration factor in mosquito fish (Gambusia spp.) in the Florida Everglades.
    Julian P
    Bull Environ Contam Toxicol; 2013 Mar; 90(3):329-32. PubMed ID: 23269441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment in the regulatory process for wetlands.
    Lemly AD
    Ecotoxicol Environ Saf; 1996 Oct; 35(1):41-56. PubMed ID: 8930504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of biotoxins produced by a cyanobacteria bloom in Lake Averno using two LC-MS-based techniques.
    Ferranti P; Fabbrocino S; Cerulo MG; Bruno M; Serpe L; Gallo P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Dec; 25(12):1530-7. PubMed ID: 19680862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa.
    Eroglu E; Melis A
    Bioresour Technol; 2010 Apr; 101(7):2359-66. PubMed ID: 20005092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.