These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 17689074)

  • 1. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips.
    Guler C; Copur Y; Tascioglu C
    Bioresour Technol; 2008 May; 99(8):2893-7. PubMed ID: 17689074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fiberboards.
    Akgül M; Tozluoğlu A
    Bioresour Technol; 2008 Sep; 99(13):5590-4. PubMed ID: 18063362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential for using the needle litter of Scotch pine (Pinus sylvestris L.) as a raw material for particleboard manufacturing.
    Nemli G; Yildiz S; Derya Gezer E
    Bioresour Technol; 2008 Sep; 99(14):6054-8. PubMed ID: 18242082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones.
    Buyuksari U; Ayrilmis N; Avci E; Koc E
    Bioresour Technol; 2010 Jan; 101(1):255-9. PubMed ID: 19733063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites.
    Nemli G; Demirel S; Gümüşkaya E; Aslan M; Acar C
    Waste Manag; 2009 Mar; 29(3):1129-31. PubMed ID: 18804991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives.
    Nemli G; Gezer ED; Yildiz S; Temiz A; Aydin A
    Bioresour Technol; 2006 Nov; 97(16):2059-64. PubMed ID: 16256344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives.
    Ciannamea EM; Stefani PM; Ruseckaite RA
    Bioresour Technol; 2010 Jan; 101(2):818-25. PubMed ID: 19766482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canola straw as a bio-waste resource for medium density fiberboard (MDF) manufacture.
    Yousefi H
    Waste Manag; 2009 Oct; 29(10):2644-8. PubMed ID: 19604682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of medium density fiberboards made from renewable biomass.
    Ye XP; Julson J; Kuo M; Womac A; Myers D
    Bioresour Technol; 2007 Mar; 98(5):1077-84. PubMed ID: 16781143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood.
    Hassan el-BM; Steele PH; Ingram L
    Appl Biochem Biotechnol; 2009 May; 154(1-3):3-13. PubMed ID: 19050831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.
    Gündüz G; Korkut S; Korkut DS
    Bioresour Technol; 2008 May; 99(7):2275-80. PubMed ID: 17604619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical properties of peanut hull pellets.
    Fasina OO
    Bioresour Technol; 2008 Mar; 99(5):1259-66. PubMed ID: 17475480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of liquefied wood as a new particle board adhesive system.
    Kunaver M; Medved S; Cuk N; Jasiukaityte E; Poljansek I; Strnad T
    Bioresour Technol; 2010 Feb; 101(4):1361-8. PubMed ID: 19836945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.
    Asghari FS; Yoshida H
    Carbohydr Res; 2010 Jan; 345(1):124-31. PubMed ID: 19892325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensiling corn stover: effect of feedstock preservation on particleboard performance.
    Ren H; Richard TL; Chen Z; Kuo M; Bian Y; Moore KJ; Patrick P
    Biotechnol Prog; 2006; 22(1):78-85. PubMed ID: 16454495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal recycling of waste and performance of the recycled wooden particleboards.
    Lykidis C; Grigoriou A
    Waste Manag; 2008; 28(1):57-63. PubMed ID: 17291743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey.
    Yildiz UC; Yildiz S; Gezer ED
    Bioresour Technol; 2005 Jun; 96(9):1003-11. PubMed ID: 15668197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of waste tire rubber in manufacture of oriented strandboard.
    Ayrilmis N; Buyuksari U; Avci E
    Waste Manag; 2009 Sep; 29(9):2553-7. PubMed ID: 19553097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selected properties of particleboard panels manufactured from rice straws of different geometries.
    Li X; Cai Z; Winandy JE; Basta AH
    Bioresour Technol; 2010 Jun; 101(12):4662-6. PubMed ID: 20153181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.
    Korkut S; Akgül M; Dündar T
    Bioresour Technol; 2008 Apr; 99(6):1861-8. PubMed ID: 17482811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.