These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 17689182)

  • 1. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark.
    Ghodbane I; Nouri L; Hamdaoui O; Chiha M
    J Hazard Mater; 2008 Mar; 152(1):148-58. PubMed ID: 17689182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran.
    Nouri L; Ghodbane I; Hamdaoui O; Chiha M
    J Hazard Mater; 2007 Oct; 149(1):115-25. PubMed ID: 17459582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies.
    Subbaiah MV; Vijaya Y; Kumar NS; Reddy AS; Krishnaiah A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):260-5. PubMed ID: 19716275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies.
    Ghodbane I; Hamdaoui O
    J Hazard Mater; 2008 Dec; 160(2-3):301-9. PubMed ID: 18400378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 May; 153(1-2):759-66. PubMed ID: 17942222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite.
    Wang XS; Huang J; Hu HQ; Wang J; Qin Y
    J Hazard Mater; 2007 Apr; 142(1-2):468-76. PubMed ID: 17010513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonication-assisted sorption of cadmium from aqueous phase by wheat bran.
    Nouri L; Hamdaoui O
    J Phys Chem A; 2007 Aug; 111(34):8456-63. PubMed ID: 17676717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch adsorption of cadmium ions from aqueous solution by means of olive cake.
    Al-Anber ZA; Matouq MA
    J Hazard Mater; 2008 Feb; 151(1):194-201. PubMed ID: 17619082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution.
    Mashitah MD; Yus Azila Y; Bhatia S
    Bioresour Technol; 2008 Jul; 99(11):4742-8. PubMed ID: 17981460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite.
    Bektaş N; Ağim BA; Kara S
    J Hazard Mater; 2004 Aug; 112(1-2):115-22. PubMed ID: 15225937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste.
    Hameed BH; Mahmoud DK; Ahmad AL
    J Hazard Mater; 2008 Oct; 158(2-3):499-506. PubMed ID: 18353547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2008 Sep; 157(2-3):448-54. PubMed ID: 18280037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust.
    Semerjian L
    J Hazard Mater; 2010 Jan; 173(1-3):236-42. PubMed ID: 19735976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste.
    Horsfall M; Abia AA; Spiff AI
    Bioresour Technol; 2006 Jan; 97(2):283-91. PubMed ID: 16171685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural sorbent, Luffa cylindrica for the removal of a model basic dye.
    Altinişik A; Gür E; Seki Y
    J Hazard Mater; 2010 Jul; 179(1-3):658-64. PubMed ID: 20378245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater.
    Ajmal M; Rao RA; Ahmad R; Khan MA
    J Hazard Mater; 2006 Jul; 135(1-3):242-8. PubMed ID: 16387435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies.
    King P; Anuradha K; Lahari SB; Prasanna Kumar Y; Prasad VS
    J Hazard Mater; 2008 Mar; 152(1):324-9. PubMed ID: 17681426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of new sorbent materials for cadmium removal from aqueous solutions.
    Benaïssa H
    J Hazard Mater; 2006 May; 132(2-3):189-95. PubMed ID: 16307844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.