These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 17689307)
1. Technique for the control of spheroid diameter using microfabricated chips. Sakai Y; Nakazawa K Acta Biomater; 2007 Nov; 3(6):1033-40. PubMed ID: 17689307 [TBL] [Abstract][Full Text] [Related]
2. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897 [TBL] [Abstract][Full Text] [Related]
3. Effect of microwell chip structure on cell microsphere production of various animal cells. Sakai Y; Yoshida S; Yoshiura Y; Mori R; Tamura T; Yahiro K; Mori H; Kanemura Y; Yamasaki M; Nakazawa K J Biosci Bioeng; 2010 Aug; 110(2):223-9. PubMed ID: 20547385 [TBL] [Abstract][Full Text] [Related]
4. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional microarray of HepG2 spheroids using collagen/polyethylene glycol micropatterned chip. Tamura T; Sakai Y; Nakazawa K J Mater Sci Mater Med; 2008 May; 19(5):2071-7. PubMed ID: 17968500 [TBL] [Abstract][Full Text] [Related]
6. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Fukuda J; Sakai Y; Nakazawa K Biomaterials; 2006 Mar; 27(7):1061-70. PubMed ID: 16111746 [TBL] [Abstract][Full Text] [Related]
7. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Anada T; Fukuda J; Sai Y; Suzuki O Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219 [TBL] [Abstract][Full Text] [Related]
8. Micropatterned organoid culture of rat hepatocytes and HepG2 cells. Mori R; Sakai Y; Nakazawa K J Biosci Bioeng; 2008 Sep; 106(3):237-42. PubMed ID: 18929998 [TBL] [Abstract][Full Text] [Related]
9. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film. Yamazaki H; Gotou S; Ito K; Kohashi S; Goto Y; Yoshiura Y; Sakai Y; Yabu H; Shimomura M; Nakazawa K J Biosci Bioeng; 2014 Oct; 118(4):455-60. PubMed ID: 24742630 [TBL] [Abstract][Full Text] [Related]
10. Growth kinetics and histological evaluation of C6 glioma spheroid with non-adhesive culture plate. Kamoshima Y; Terasaka S; Iwasaki Y Hokkaido Igaku Zasshi; 2008 Jan; 83(1):23-7. PubMed ID: 18283865 [TBL] [Abstract][Full Text] [Related]
11. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Fukuda J; Nakazawa K Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461 [TBL] [Abstract][Full Text] [Related]
12. Hepatocyte spheroid culture on a polydimethylsiloxane chip having microcavities. Nakazawa K; Izumi Y; Fukuda J; Yasuda T J Biomater Sci Polym Ed; 2006; 17(8):859-73. PubMed ID: 17024877 [TBL] [Abstract][Full Text] [Related]
13. Changes in HepG2 spheroid behavior induced by differences in the gap distance between spheroids in a micropatterned culture system. Miyamoto D; Hara T; Hyakutake A; Nakazawa K J Biosci Bioeng; 2018 Jun; 125(6):729-735. PubMed ID: 29352710 [TBL] [Abstract][Full Text] [Related]
14. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Glicklis R; Merchuk JC; Cohen S Biotechnol Bioeng; 2004 Jun; 86(6):672-80. PubMed ID: 15137079 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and functional changes of rat liver spheroids during spheroid formation and maintenance in culture: I. morphological maturation and kinetic changes of energy metabolism, albumin synthesis, and activities of some enzymes. Ma M; Xu J; Purcell WM J Cell Biochem; 2003 Dec; 90(6):1166-75. PubMed ID: 14635190 [TBL] [Abstract][Full Text] [Related]
17. Flexible fluidic microchips based on thermoformed and locally modified thin polymer films. Truckenmüller R; Giselbrecht S; van Blitterswijk C; Dambrowsky N; Gottwald E; Mappes T; Rolletschek A; Saile V; Trautmann C; Weibezahn KF; Welle A Lab Chip; 2008 Sep; 8(9):1570-9. PubMed ID: 18818815 [TBL] [Abstract][Full Text] [Related]
18. Drug testing on 3D in vitro tissues trapped on a microcavity chip. Kloss D; Fischer M; Rothermel A; Simon JC; Robitzki AA Lab Chip; 2008 Jun; 8(6):879-84. PubMed ID: 18497906 [TBL] [Abstract][Full Text] [Related]
19. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Yoshimoto K; Ichino M; Nagasaki Y Lab Chip; 2009 May; 9(9):1286-9. PubMed ID: 19370250 [TBL] [Abstract][Full Text] [Related]
20. Measurement of plaque-forming macrophages activated by lipopolysaccharide in a micro-channel chip. Isoda T; Tsutsumi T; Yamazaki K; Nishihara T J Periodontal Res; 2009 Oct; 44(5):609-15. PubMed ID: 19453861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]