These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17689799)

  • 1. Enzymatic synthesis of galactosyl lactic ethyl ester and its polymer for use as biomaterials.
    Jia H; Wang P
    J Biotechnol; 2007 Nov; 132(3):314-7. PubMed ID: 17689799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) and poly(D-lactic acid).
    Fukushima K; Furuhashi Y; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2005 Jan; 5(1):21-9. PubMed ID: 15633160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease-catalyzed oligomerization and hydrolysis of alkyl lactates involving L-enantioselective deacylation step.
    Ohara H; Nishioka E; Yamaguchi S; Kawai F; Kobayashi S
    Biomacromolecules; 2011 Oct; 12(10):3833-7. PubMed ID: 21870833
    [No Abstract]   [Full Text] [Related]  

  • 4. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts.
    Inaba C; Maekawa K; Morisaka H; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):859-64. PubMed ID: 19288094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-catalyzed synthesis of poly(amine-co-esters) via copolymerization of diester with amino-substituted diol.
    Jiang Z
    Biomacromolecules; 2010 Apr; 11(4):1089-93. PubMed ID: 20205448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-lactic acid synthesis for application in biomedical devices - a review.
    Lasprilla AJ; Martinez GA; Lunelli BH; Jardini AL; Filho RM
    Biotechnol Adv; 2012; 30(1):321-8. PubMed ID: 21756992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.
    Pellis A; Acero EH; Weber H; Obersriebnig M; Breinbauer R; Srebotnik E; Guebitz GM
    Biotechnol J; 2015 Sep; 10(11):1739-49. PubMed ID: 25963883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(carbonate-ester)s of dihydroxyacetone and lactic acid as potential biomaterials.
    Weiser JR; Zawaneh PN; Putnam D
    Biomacromolecules; 2011 Apr; 12(4):977-86. PubMed ID: 21401021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2,5-dione and D,L-lactide.
    Feng Y; Klee D; Höcker H
    Macromol Biosci; 2004 Jun; 4(6):587-90. PubMed ID: 15468252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-catalyzed ring-opening polymerization of the O-carboxylic anhydride derived from lactic acid.
    Bonduelle C; Martin-Vaca B; Bourissou D
    Biomacromolecules; 2009 Nov; 10(11):3069-73. PubMed ID: 19634904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers.
    Takahashi Y; Okajima S; Toshima K; Matsumura S
    Macromol Biosci; 2004 Mar; 4(3):346-53. PubMed ID: 15468226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid).
    Jahno VD; Ribeiro GB; dos Santos LA; Ligabue R; Einloft S; Ferreira MR; Bombonato-Prado KF
    J Biomed Mater Res A; 2007 Oct; 83(1):209-15. PubMed ID: 17437300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide.
    Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T
    Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3,4-ethylenedioxytiophene and poly(l-lactic acid).
    da Silva AC; Augusto T; Andrade LH; Córdoba de Torresi SI
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():35-43. PubMed ID: 29208286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo degradation of poly(lactic acid) of different molecular weights.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):153-62. PubMed ID: 3841816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).
    Jeon BW; Lee J; Kim HS; Cho DH; Lee H; Chang R; Kim YH
    J Biotechnol; 2013 Oct; 168(2):201-7. PubMed ID: 23845270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Readily controllable step-growth polymerization method for poly(lactic acid) copolymers having a high glass transition temperature.
    Inkinen S; Stolt M; Södergård A
    Biomacromolecules; 2010 May; 11(5):1196-201. PubMed ID: 20345130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.