BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17689867)

  • 21. Extracting physically interpretable data from electron energy-loss spectra.
    Witte C; Zaluzec NJ; Allen LJ
    Ultramicroscopy; 2010 Oct; 110(11):1390-6. PubMed ID: 20650565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative valence plasmon mapping in the TEM: viewing physical properties at the nanoscale.
    Daniels HR; Brydson R; Brown A; Rand B
    Ultramicroscopy; 2003 Sep; 96(3-4):547-58. PubMed ID: 12871815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: a case study on Co-doped ZnO.
    Wang X; Song F; Chen Q; Wang T; Wang J; Liu P; Shen M; Wan J; Wang G; Xu JB
    J Am Chem Soc; 2010 May; 132(18):6492-7. PubMed ID: 20405827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Practical aspects of running the WIEN2k code for electron spectroscopy.
    Hébert C
    Micron; 2007; 38(1):12-28. PubMed ID: 16914318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-loss special issue based on the presentations of the 14th Congress on Electron Microscopy, Cancun, Mexico, September 1998. Session K: electron energy-loss spectroscopy (EELS), energy-loss near-edge structure (ELNES) and extended energy-loss fine structure (EXELFS).
    Micron; 2000 Aug; 31(4):325-456. PubMed ID: 10741603
    [No Abstract]   [Full Text] [Related]  

  • 26. The magic angle: a solved mystery.
    Jouffrey B; Schattschneider P; Hébert C
    Ultramicroscopy; 2004 Dec; 102(1):61-6. PubMed ID: 15556701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local analysis of the edge dislocation core in BaTiO(3) thin film by STEM-EELS.
    Kurata H; Isojima S; Kawai M; Shimakawa Y; Isoda S
    J Microsc; 2009 Nov; 236(2):128-31. PubMed ID: 19903238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The applications of in situ electron energy loss spectroscopy to the study of electron beam nanofabrication.
    Chen SJ; Howitt DG; Gierhart BC; Smith RL; Collins SD
    Microsc Microanal; 2009 Jun; 15(3):204-12. PubMed ID: 19460176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy loss spectroscopic profiling across linear interfaces: the example of amorphous carbon superlattices.
    Stolojan V; Moreau P; Henley SJ; Goringe MJ; Silva SR
    Ultramicroscopy; 2006 Mar; 106(4-5):346-55. PubMed ID: 16387439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution Z-contrast imaging and EELS study of functional oxide materials.
    Klie RF; Zhao Y; Yang G; Zhu Y
    Micron; 2008 Aug; 39(6):723-33. PubMed ID: 18082411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculations of van der Waals forces in 2-dimensionally anisotropic materials and its application to carbon black.
    Dagastine RR; Prieve DC; White LR
    J Colloid Interface Sci; 2002 May; 249(1):78-83. PubMed ID: 16290570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based quantification of EELS spectra: Including the fine structure.
    Verbeeck J; Van Aert S; Bertoni G
    Ultramicroscopy; 2006; 106(11-12):976-80. PubMed ID: 16843599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy.
    Cohen-Ofri I; Popovitz-Biro R; Weiner S
    Chemistry; 2007; 13(8):2306-10. PubMed ID: 17163552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembled carbon nanotubes on gold: polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study.
    Kocharova N; Leiro J; Lukkari J; Heinonen M; Skala T; Sutara F; Skoda M; Vondracek M
    Langmuir; 2008 Apr; 24(7):3235-43. PubMed ID: 18281998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation damage analysis of 7,7,8,8,-tetracyanoquinodimethane (TCNQ) and 2,3,5,6,-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4TCNQ) by electron diffraction and electron energy loss spectroscopy.
    Koshino M; Masunaga YH; Nemoto T; Kurata H; Isoda S
    Micron; 2005; 36(3):271-9. PubMed ID: 15725597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the chemical structure in diamond-based materials using combined low-loss and core-loss electron energy-loss spectroscopy.
    Longo P; Twesten RD; Olivier J
    Microsc Microanal; 2014 Jun; 20(3):779-83. PubMed ID: 24666478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic resolution STEM analysis of defects and interfaces in ceramic materials.
    Klie RF; Zhu Y
    Micron; 2005; 36(3):219-31. PubMed ID: 15725591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sp
    Diociaiuti M; Casciardi S; Sisto R
    Micron; 2016 Nov; 90():97-107. PubMed ID: 27639109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Element-selective single atom imaging.
    Suenaga K; Tence M; Mory C; Colliex C; Kato H; Okazaki T; Shinohara H; Hirahara K; Bandow S; Iijima S
    Science; 2000 Dec; 290(5500):2280-2. PubMed ID: 11125135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the chemical bonding in inner layers of composite materials.
    Schneider R; Woltersdorf J; Röder A
    Anal Bioanal Chem; 1995 Oct; 353(3-4):263-6. PubMed ID: 15048479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.