These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17689927)

  • 21. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum.
    Biondi RM; Baehler PJ; Reymond CD; Véron M
    Nucleic Acids Res; 1998 Nov; 26(21):4946-52. PubMed ID: 9776758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting FRET-Based Reporters for cAMP and PKA Activity Using AKAP79.
    Musheshe N; Lobo MJ; Schmidt M; Zaccolo M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29976855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes.
    Colombo S; Broggi S; Collini M; D'Alfonso L; Chirico G; Martegani E
    Biochem Biophys Res Commun; 2017 Jun; 487(3):594-599. PubMed ID: 28433631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification and Comparison of Signals Generated by Different FRET-Based cAMP Reporters.
    Koschinski A; Zaccolo M
    Methods Mol Biol; 2019; 1947():217-237. PubMed ID: 30969419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor.
    Warrier S; Belevych AE; Ruse M; Eckert RL; Zaccolo M; Pozzan T; Harvey RD
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C455-61. PubMed ID: 15788489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo.
    Efetova M; Petereit L; Rosiewicz K; Overend G; Haußig F; Hovemann BT; Cabrero P; Dow JA; Schwärzel M
    J Cell Sci; 2013 Feb; 126(Pt 3):778-88. PubMed ID: 23264735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. cAMPr: A single-wavelength fluorescent sensor for cyclic AMP.
    Hackley CR; Mazzoni EO; Blau J
    Sci Signal; 2018 Mar; 11(520):. PubMed ID: 29511120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel approach combining real-time imaging and the patch-clamp technique to calibrate FRET-based reporters for cAMP in their cellular microenvironment.
    Koschinski A; Zaccolo M
    Methods Mol Biol; 2015; 1294():25-40. PubMed ID: 25783875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. cAMP: From Long-Range Second Messenger to Nanodomain Signalling.
    Musheshe N; Schmidt M; Zaccolo M
    Trends Pharmacol Sci; 2018 Feb; 39(2):209-222. PubMed ID: 29289379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging cAMP nanodomains in the heart.
    Chao YC; Surdo NC; Pantano S; Zaccolo M
    Biochem Soc Trans; 2019 Oct; 47(5):1383-1392. PubMed ID: 31670375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [cAMP, cGMP and their visualization in living cells using fluorescent microscopy].
    Nikolaev VO
    Tsitologiia; 2011; 53(8):623-32. PubMed ID: 21961281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A toolkit for real-time detection of cAMP: insights into compartmentalized signaling.
    Berrera M; Dodoni G; Monterisi S; Pertegato V; Zamparo I; Zaccolo M
    Handb Exp Pharmacol; 2008; (186):285-98. PubMed ID: 18491057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of 3-Dimensional cAMP Distributions in Living Cells using 4-Dimensional (x, y, z, and λ) Hyperspectral FRET Imaging and Analysis.
    Annamdevula NS; Sweat R; Gunn H; Griswold JR; Britain AL; Rich TC; Leavesley SJ
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of Transgenic Mice Expressing Cytosolic and Targeted FRET Biosensors for cAMP and cGMP.
    Kurelić R; Nikolaev VO
    Methods Mol Biol; 2022; 2483():241-254. PubMed ID: 35286680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.
    Koschinski A; Zaccolo M
    Sci Rep; 2017 Oct; 7(1):14090. PubMed ID: 29074866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease.
    Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Maier LS; Hasenfuss G; Nikolaev VO
    Nat Commun; 2015 Apr; 6():6965. PubMed ID: 25917898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recording intracellular cAMP levels with EPAC-based FRET sensors by fluorescence lifetime imaging.
    Raspe M; Klarenbeek J; Jalink K
    Methods Mol Biol; 2015; 1294():13-24. PubMed ID: 25783874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells.
    Schmid A; Bai G; Schmid N; Zaccolo M; Ostrowski LE; Conner GE; Fregien N; Salathe M
    J Cell Sci; 2006 Oct; 119(Pt 20):4176-86. PubMed ID: 16984973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain.
    Bastug-Özel Z; Wright PT; Kraft AE; Pavlovic D; Howie J; Froese A; Fuller W; Gorelik J; Shattock MJ; Nikolaev VO
    Cardiovasc Res; 2019 Mar; 115(3):546-555. PubMed ID: 30165515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting cAMP with an EPAC-based FRET sensor in single living cells.
    Klarenbeek J; Jalink K
    Methods Mol Biol; 2014; 1071():49-58. PubMed ID: 24052379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.