These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 17689961)

  • 1. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans.
    Rodríguez-Ezpeleta N; Brinkmann H; Burger G; Roger AJ; Gray MW; Philippe H; Lang BF
    Curr Biol; 2007 Aug; 17(16):1420-5. PubMed ID: 17689961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes.
    Simpson AG; Inagaki Y; Roger AJ
    Mol Biol Evol; 2006 Mar; 23(3):615-25. PubMed ID: 16308337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies.
    Edgcomb VP; Roger AJ; Simpson AG; Kysela DT; Sogin ML
    Mol Biol Evol; 2001 Apr; 18(4):514-22. PubMed ID: 11264402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts.
    Burki F; Pawlowski J
    Mol Biol Evol; 2006 Oct; 23(10):1922-30. PubMed ID: 16829542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata.
    Moreira D; von der Heyden S; Bass D; López-García P; Chao E; Cavalier-Smith T
    Mol Phylogenet Evol; 2007 Jul; 44(1):255-66. PubMed ID: 17174576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
    Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D
    Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata.
    Hampl V; Horner DS; Dyal P; Kulda J; Flegr J; Foster PG; Embley TM
    Mol Biol Evol; 2005 Dec; 22(12):2508-18. PubMed ID: 16120804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.
    Cavalier-Smith T; Chao EE
    J Mol Evol; 2003 May; 56(5):540-63. PubMed ID: 12698292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protistan origins of animals and fungi.
    Steenkamp ET; Wright J; Baldauf SL
    Mol Biol Evol; 2006 Jan; 23(1):93-106. PubMed ID: 16151185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomics of eukaryotes: impact of missing data on large alignments.
    Philippe H; Snell EA; Bapteste E; Lopez P; Holland PW; Casane D
    Mol Biol Evol; 2004 Sep; 21(9):1740-52. PubMed ID: 15175415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes.
    Kim E; Simpson AG; Graham LE
    Mol Biol Evol; 2006 Dec; 23(12):2455-66. PubMed ID: 16982820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota).
    Simpson AG
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):1759-77. PubMed ID: 14657103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancestral relationships of the major eukaryotic lineages.
    Sogin ML; Morrison HG; Hinkle G; Silberman JD
    Microbiologia; 1996 Mar; 12(1):17-28. PubMed ID: 9019131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes.
    Hug LA; Stechmann A; Roger AJ
    Mol Biol Evol; 2010 Feb; 27(2):311-24. PubMed ID: 19805439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution.
    Archibald JM; O'Kelly CJ; Doolittle WF
    Mol Biol Evol; 2002 Apr; 19(4):422-31. PubMed ID: 11919283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure and molecular phylogeny of Stephanopogon minuta: an enigmatic microeukaryote from marine interstitial environments.
    Yubuki N; Leander BS
    Eur J Protistol; 2008 Nov; 44(4):241-53. PubMed ID: 18403188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the protists and protistan parasites from the perspective of molecular systematics.
    Sogin ML; Silberman JD
    Int J Parasitol; 1998 Jan; 28(1):11-20. PubMed ID: 9504331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rooting the eukaryote tree by using a derived gene fusion.
    Stechmann A; Cavalier-Smith T
    Science; 2002 Jul; 297(5578):89-91. PubMed ID: 12098695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Andalucia (n. gen.)--the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil.
    Lara E; Chatzinotas A; Simpson AG
    J Eukaryot Microbiol; 2006; 53(2):112-20. PubMed ID: 16579813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary analysis of synteny and gene fusion for pyrimidine biosynthetic enzymes in Euglenozoa: an extraordinary gap between kinetoplastids and diplonemids.
    Makiuchi T; Annoura T; Hashimoto T; Murata E; Aoki T; Nara T
    Protist; 2008 Jul; 159(3):459-70. PubMed ID: 18394957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.