BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1769012)

  • 1. Electric field stimulation of human osteosarcoma-derived cells: a dose-response study.
    Naegele RJ; Lipari J; Chakkalakal D; Strates B; McGuire M
    Cancer Biochem Biophys; 1991 Aug; 12(2):95-101. PubMed ID: 1769012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production.
    Lohmann CH; Schwartz Z; Liu Y; Guerkov H; Dean DD; Simon B; Boyan BD
    J Orthop Res; 2000 Jul; 18(4):637-46. PubMed ID: 11052501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release.
    Fitzsimmons RJ; Strong DD; Mohan S; Baylink DJ
    J Cell Physiol; 1992 Jan; 150(1):84-9. PubMed ID: 1730789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric fields and proliferation in a chronic wound model.
    Goldman R; Pollack S
    Bioelectromagnetics; 1996; 17(6):450-7. PubMed ID: 8986362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium.
    Fitzsimmons RJ; Farley JR; Adey WR; Baylink DJ
    J Cell Physiol; 1989 Jun; 139(3):586-91. PubMed ID: 2738103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells.
    Farboud B; Nuccitelli R; Schwab IR; Isseroff RR
    Exp Eye Res; 2000 May; 70(5):667-73. PubMed ID: 10870525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field.
    Wang E; Zhao M; Forrester JV; MCCaig CD
    Exp Eye Res; 2000 Jul; 71(1):91-8. PubMed ID: 10880279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle.
    Brighton CT; Okereke E; Pollack SR; Clark CC
    Clin Orthop Relat Res; 1992 Dec; (285):255-62. PubMed ID: 1446447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo.
    Song B; Gu Y; Pu J; Reid B; Zhao Z; Zhao M
    Nat Protoc; 2007; 2(6):1479-89. PubMed ID: 17545984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input-output relationship in galvanotactic response of Dictyostelium cells.
    Sato MJ; Ueda M; Takagi H; Watanabe TM; Yanagida T; Ueda M
    Biosystems; 2007 Apr; 88(3):261-72. PubMed ID: 17184899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes.
    Heo C; Yoo J; Lee S; Jo A; Jung S; Yoo H; Lee YH; Suh M
    Biomaterials; 2011 Jan; 32(1):19-27. PubMed ID: 20880583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.
    Min Y; Yang Y; Poojari Y; Liu Y; Wu JC; Hansford DJ; Epstein AJ
    Biomacromolecules; 2013 Jun; 14(6):1727-31. PubMed ID: 23600698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in traction forces with DC electric field in osteoblast-like cells.
    Curtze S; Dembo M; Miron M; Jones DB
    J Cell Sci; 2004 Jun; 117(Pt 13):2721-9. PubMed ID: 15150319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of human leukemic cells to direct electric current: generation of toxic compounds inducing cell death by different mechanisms.
    Veiga VF; Nimrichter L; Teixeira CA; Morales MM; Alviano CS; Rodrigues ML; Holandino C
    Cell Biochem Biophys; 2005; 42(1):61-74. PubMed ID: 15673929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed cell movement: a biophysical analysis.
    Gruler H
    Blood Cells; 1993; 19(1):91-110; discussion 110-3. PubMed ID: 8400316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Directed migration and morphological changes of cultured trophoblast cells in small electric fields].
    Luo XF; Huang Y; Fan P; Peng B; Liu R; Bai H
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2010 Sep; 41(5):771-4, 802. PubMed ID: 21302438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2).
    Santini MT; Rainaldi G; Ferrante A; Indovina PL; Vecchia P; Donelli G
    Bioelectromagnetics; 2003 Jul; 24(5):327-38. PubMed ID: 12820290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 60-Hz electric fields inhibit protein kinase C activity and multidrug resistance gene (MDR1) up-regulation.
    Walter RJ; Shtil AA; Roninson IB; Holian O
    Radiat Res; 1997 Mar; 147(3):369-75. PubMed ID: 9052685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression.
    Perissinotto E; Cavalloni G; Leone F; Fonsato V; Mitola S; Grignani G; Surrenti N; Sangiolo D; Bussolino F; Piacibello W; Aglietta M
    Clin Cancer Res; 2005 Jan; 11(2 Pt 1):490-7. PubMed ID: 15701832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields.
    Sollazzo V; Traina GC; DeMattei M; Pellati A; Pezzetti F; Caruso A
    Bioelectromagnetics; 1997; 18(8):541-7. PubMed ID: 9383242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.