These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 17690175)

  • 41. Dual-digitonin-pulse perfusion. Concurrent sampling of periportal and perivenous cytosol of rat liver for determination of metabolites and enzyme activities.
    Quistorff B; Grunnet N
    Biochem J; 1987 Apr; 243(1):87-95. PubMed ID: 3606584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis.
    Ohtake Y; Clemens MG
    Am J Physiol; 1991 Mar; 260(3 Pt 1):E453-8. PubMed ID: 2003598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Opposite fluxes of glutamine and alanine in the splanchnic area are an efficient mechanism for nitrogen sparing in rats.
    Lopez HW; Moundras C; Morand C; Demigné C; Rémésy C
    J Nutr; 1998 Sep; 128(9):1487-94. PubMed ID: 9732309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vascular branching pattern and zonation of gene expression in the mammalian liver. A comparative study in rat, mouse, cynomolgus monkey, and pig.
    Wagenaar GT; Moorman AF; Chamuleau RA; Deutz NE; De Gier C; De Boer PA; Verbeek FJ; Lamers WH
    Anat Rec; 1994 Aug; 239(4):441-52. PubMed ID: 7978367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate and pH effects on glutamine synthesis in rat liver. Consequences for acid-base regulation.
    Almond MK; Smith A; Cohen RD; Iles RA; Flynn G
    Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):709-14. PubMed ID: 1898360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glutamine or glutamate release by the liver constitutes a major mechanism for nitrogen salvage.
    Rémésy C; Moundras C; Morand C; Demigné C
    Am J Physiol; 1997 Feb; 272(2 Pt 1):G257-64. PubMed ID: 9124349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures.
    Wölfle D; Schmidt H; Jungermann K
    Eur J Biochem; 1983 Oct; 135(3):405-12. PubMed ID: 6413204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential gene expression in periportal and perivenous mouse hepatocytes.
    Braeuning A; Ittrich C; Köhle C; Hailfinger S; Bonin M; Buchmann A; Schwarz M
    FEBS J; 2006 Nov; 273(22):5051-61. PubMed ID: 17054714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.
    Häussinger D; Lamers WH; Moorman AF
    Enzyme; 1992; 46(1-3):72-93. PubMed ID: 1289083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of lactate, pyruvate, butyrate and ammonia on gluconeogenesis from propionate by isolated rabbit liver cells.
    Jean-Blain C; Martin G
    Ann Rech Vet; 1980; 11(4):427-36. PubMed ID: 7337398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of ethanol metabolism in isolated periportal or perivenous hepatocytes: effects of chronic ethanol treatment.
    Väänänen H; Lindros KO
    Alcohol Clin Exp Res; 1985; 9(4):315-21. PubMed ID: 3901800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cysteine metabolism in periportal and perivenous hepatocytes: perivenous cells have greater capacity for glutathione production and taurine synthesis but not for cysteine catabolism.
    Bella DL; Hirschberger LL; Kwon YH; Stipanuk MH
    Amino Acids; 2002; 23(4):453-8. PubMed ID: 12436215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gluconeogenesis in the liver of arthritic rats.
    Fedatto Júnior Z; Ishii-Iwamoto EL; Amado CB; Vicentini GE; Panerari AD; Bracht A; Kelmer-Bracht AM
    Cell Biochem Funct; 1999 Dec; 17(4):271-8. PubMed ID: 10587614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Ammonia-neutralizing function of hepatocytes after experimental liver resection].
    Savilov PN
    Patol Fiziol Eksp Ter; 2002; (4):11-3. PubMed ID: 12638422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic effects of propofol in the isolated perfused rat liver.
    Acco A; Comar JF; Bracht A
    Basic Clin Pharmacol Toxicol; 2004 Oct; 95(4):166-74. PubMed ID: 15504152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pharmacologic modulation of increased release of gluconeogenic precursors from extra-splanchnic organs in sepsis.
    Vary TC; Placko R; Siegel JH
    Circ Shock; 1989 Sep; 29(1):59-76. PubMed ID: 2571428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hormone effects on hepatic substrate preference in sepsis.
    Paidas CN; Clemens MG
    Shock; 1994 Feb; 1(2):94-100. PubMed ID: 7749935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique.
    Quistorff B
    Biochem J; 1985 Jul; 229(1):221-6. PubMed ID: 2994630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells.
    Genzel Y; Ritter JB; König S; Alt R; Reichl U
    Biotechnol Prog; 2005; 21(1):58-69. PubMed ID: 15903241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.